# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel from transformers import AutoTokenizer init_pipeline_parallel() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-13b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format try: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, trust_remote_code=True, use_cache=True, torch_dtype=torch.float16, pipeline_parallel_stages=args.gpu_num) except: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, trust_remote_code=True, use_cache=True, pipeline_parallel_stages=args.gpu_num) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) local_rank = torch.distributed.get_rank() # Generate predicted tokens with torch.inference_mode(): input_ids = tokenizer.encode(args.prompt, return_tensors="pt").to(f'xpu:{local_rank}') # ipex_llm model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict) # start inference st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output = output.cpu() if local_rank == args.gpu_num - 1: output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print(f"First token cost {model.first_token_time:.4f} s and rest tokens cost average {model.rest_cost_mean:.4f} s") print('-'*20, 'Prompt', '-'*20) print(args.prompt) print('-'*20, 'Output', '-'*20) print(output_str)