# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Python program to convert CSV to HTML Table import os import sys import argparse import pandas as pd def highlight_vals(val, max=3.0, color1='red', color2='green'): if isinstance(val, float): if val > max: return 'background-color: %s' % color2 elif val <= -max: return 'background-color: %s' % color1 else: return '' def main(): parser = argparse.ArgumentParser(description="convert .csv file to .html file") parser.add_argument("-f", "--folder_path", type=str, dest="folder_path", help="The directory which stores the .csv file", default="/mnt/disk1/whisper_pr_gpu/") parser.add_argument("-t", "--threshold", type=float, dest="threshold", help="the threshold of highlight values", default=1.0) args = parser.parse_args() csv_files = [] for file_name in os.listdir(args.folder_path): file_path = os.path.join(args.folder_path, file_name) if os.path.isfile(file_path) and file_name.endswith(".csv"): csv_files.append(file_path) csv_files.sort(reverse=True) latest_csv = pd.read_csv(csv_files[0], index_col=0) daily_html=csv_files[0].split(".")[0]+".html" if len(csv_files)>1: previous_csv = pd.read_csv(csv_files[1], index_col=0) last1=['']*len(latest_csv.index) diff1=['']*len(latest_csv.index) last2=['']*len(latest_csv.index) diff2=['']*len(latest_csv.index) WER='WER' RTF='RTF' for latest_csv_ind,latest_csv_row in latest_csv.iterrows(): latest_csv_model=latest_csv_row['models'].strip() latest_csv_precision=latest_csv_row['precision'].strip() latest_WER=latest_csv_row[WER] latest_RTF=latest_csv_row[RTF] in_previous_flag=False for previous_csv_ind,previous_csv_row in previous_csv.iterrows(): previous_csv_model=previous_csv_row['models'].strip() previous_csv_precision=previous_csv_row['precision'].strip() if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision: previous_WER=previous_csv_row[WER] previous_RTF=previous_csv_row[RTF] if previous_WER > 0.0 and previous_RTF > 0.0: last1[latest_csv_ind]=previous_WER diff1[latest_csv_ind]=round((previous_WER-latest_WER)*100/previous_WER,2) last2[latest_csv_ind]=previous_RTF diff2[latest_csv_ind]=round((previous_RTF-latest_RTF)*100/previous_RTF,2) in_previous_flag=True if not in_previous_flag: last1[latest_csv_ind]=pd.NA diff1[latest_csv_ind]=pd.NA last2[latest_csv_ind]=pd.NA diff2[latest_csv_ind]=pd.NA latest_csv.insert(loc=4,column='last1',value=last1) latest_csv.insert(loc=5,column='diff1(%)',value=diff1) latest_csv.insert(loc=6,column='last2',value=last2) latest_csv.insert(loc=7,column='diff2(%)',value=diff2) subset1=['diff1(%)','diff2(%)'] columns={'WER': '{:.6f}', 'RTF': '{:.6f}', 'last1': '{:.6f}', 'diff1(%)': '{:.6f}','last2': '{:.6f}', 'diff2(%)': '{:.6f}'} styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=1.0, color1='red', color2='green'), subset=subset1) html_output = styled_df.set_table_attributes("border=1").render() with open(daily_html, 'w') as f: f.write(html_output) else: latest_csv.to_html(daily_html) return 0 if __name__ == "__main__": sys.exit(main())