# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/qwen2/modeling_qwen2.py # which is licensed under Apache License 2.0: # # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math from typing import Optional, Tuple, Union, List import torch from torch.nn import CrossEntropyLoss from torch.nn.functional import scaled_dot_product_attention as sdpa from ipex_llm.transformers.models.utils import should_use_fuse_rope from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache from ipex_llm.utils.common import invalidInputError from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.cache_utils import Cache, DynamicCache from transformers import logging logger = logging.get_logger(__name__) def qwen2_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache input = input_ids if input_ids is not None else inputs_embeds use_quantize_kv = ( self.config.hidden_size != 3584 # disable quantize kv in specific model and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input) ) if use_cache: if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) if not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) return qwen2_model_forward_internal( self=self, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) def qwen2_model_forward_internal( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else \ self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: invalidInputError(False, "You cannot specify both decoder_input_ids and " "decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: invalidInputError(False, "You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. " "Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) flash_attn_2 = self._attn_implementation == "flash_attention_2" if attention_mask is not None and flash_attn_2 and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: invalidInputError( False, "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Qwen2." " Make sure to call `tokenizer.padding_side = 'left'` before tokenizing " "the input. " ) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: # ipex-llm changes curr_device = decoder_layer.input_layernorm.weight.device if attention_mask is not None: attention_mask = attention_mask.to(curr_device) if position_ids is not None: position_ids = position_ids.to(curr_device) # ipex-llm changes end layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else \ next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) def qwen2_causal_lm_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) # ipex-llm changes start: remove `logits.float()` to reduce memory usage with long input # logits = logits.float() # ipex-llm changes end loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def merge_qkv(module: torch.nn.Module): if isinstance(module, Qwen2Attention): new_weight = torch.cat([ module.q_proj.weight.data, module.k_proj.weight.data, module.v_proj.weight.data, ], dim=0) new_bias = torch.cat([ module.q_proj.bias.data, module.k_proj.bias.data, module.v_proj.bias.data, ], dim=-1) qkv_proj = torch.nn.Linear(0, 0, bias=True) qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False) qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False) qkv_proj.in_features = new_weight.size(1) qkv_proj.out_features = new_weight.size(0) module.qkv_proj = qkv_proj del module.q_proj, module.k_proj, module.v_proj # Qwen2 uses pre-computed rope table to accelerate rope, # original `cos_cached` and `sin_cached` are added by `register_buffer`, # so they will move to xpu during `model.to('xpu')`. # But gpu fuse kernel doesn't need this rope table, only cpu needs them, # so delete them then add them with `=`, so that they will be pinned on CPU, # this can save about 0.5GB gpu memory usage when running Qwen2 if hasattr(module.rotary_emb, "cos_cached"): cos_cached = module.rotary_emb.cos_cached del module.rotary_emb.cos_cached module.rotary_emb.cos_cached = cos_cached if hasattr(module.rotary_emb, "sin_cached"): sin_cached = module.rotary_emb.sin_cached del module.rotary_emb.sin_cached module.rotary_emb.sin_cached = sin_cached def padding_mlp(module: torch.nn.Module): # for qwen 1.5 14B if isinstance(module, Qwen2MLP): hidden_size = module.gate_proj.weight.shape[1] intermediate_size = module.gate_proj.weight.shape[0] padding_intermediate_size = (intermediate_size + 256 - 1) // 256 * 256 if intermediate_size % 256 == 0: return gate_weight = module.gate_proj.weight.data new_gate_weight = torch.zeros([padding_intermediate_size, hidden_size], dtype=gate_weight.dtype, device=gate_weight.device) new_gate_weight[:intermediate_size, :] = gate_weight if hasattr(module.gate_proj, 'out_features'): module.gate_proj.out_features = padding_intermediate_size module.gate_proj.weight = torch.nn.Parameter(new_gate_weight, requires_grad=False) up_weight = module.up_proj.weight.data new_up_weight = torch.zeros([padding_intermediate_size, hidden_size], dtype=up_weight.dtype, device=up_weight.device) new_up_weight[:intermediate_size, :] = up_weight if hasattr(module.gate_proj, 'out_features'): module.up_proj.out_features = padding_intermediate_size module.up_proj.weight = torch.nn.Parameter(new_up_weight, requires_grad=False) down_weight = module.down_proj.weight.data new_down_weight = torch.zeros([hidden_size, padding_intermediate_size], dtype=down_weight.dtype, device=down_weight.device) new_down_weight[:, :intermediate_size] = down_weight if hasattr(module.gate_proj, 'out_features'): module.down_proj.in_features = padding_intermediate_size module.down_proj.weight = torch.nn.Parameter(new_down_weight, requires_grad=False) def qwen2_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device if hasattr(self, 'qkv_proj') and self.qkv_proj is not None: qkv = self.qkv_proj(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=1) else: # when quant_method is 'gptq' query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) \ .transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) \ .transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) if should_use_fuse_rope(hidden_states, position_ids, self.training): import xe_addons xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids, query_states, key_states) else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) cos, sin = cos.to(device), sin.to(device) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, None) attn_weights = None if query_states.device.type == "cpu": # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_output = sdpa(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=self.is_causal and attention_mask is None and q_len > 1) elif not self.training and not hidden_states.requires_grad and \ use_flash_attention(query_states, key_states, attention_mask): # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_output = sdpa(query_states.to(device, dtype=torch.float16), key_states.to(device, dtype=torch.float16), value_states.to(device, dtype=torch.float16), is_causal=True).to(hidden_states.dtype) elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states): import xe_addons if isinstance(past_key_value, DynamicFp8Cache): attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask) elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): import xe_addons if isinstance(past_key_value, DynamicFp8Cache): attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, attention_mask) else: if isinstance(past_key_value, DynamicFp8Cache): key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value