# Scala User Guide
---
### **1. Try Analytics Zoo Examples**
This section will show you how to download Analytics Zoo prebuild packages and run the build-in examples.
#### **1.1 Download and config**
You can download the Analytics Zoo official releases and nightly build from the [Release Page](../release.md). After extracting the prebuild package, you need to set environment variables **ANALYTICS_ZOO_HOME** and **SPARK_HOME** as follows:
```bash
export SPARK_HOME=folder path where you extract the Spark package
export ANALYTICS_ZOO_HOME=folder path where you extract the Analytics Zoo package
```
#### **1.2 Use Spark interactive shell**
You can try Analytics Zoo using the Spark interactive shell as follows:
```bash
${ANALYTICS_ZOO_HOME}/bin/spark-shell-with-zoo.sh --master local[2]
```
You will then see a welcome message like below:
```
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.3
/_/
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.
```
Before you try Analytics Zoo APIs, you should use `initNNcontext` to verify your environment:
```scala
scala> import com.intel.analytics.zoo.common.NNContext
import com.intel.analytics.zoo.common.NNContext
scala> val sc = NNContext.initNNContext("Run Example")
2021-01-26 10:19:52 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
2021-01-26 10:19:53 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@487f025
```
#### **1.3 Run Analytics Zoo examples**
You can run an Analytics Zoo example, e.g., the [Wide & Deep Recommendation](https://github.com/intel-analytics/analytics-zoo/tree/master/zoo/src/main/scala/com/intel/analytics/zoo/examples/recommendation), as a standard Spark program (running in either local mode or cluster mode) as follows:
1. Download Census Income Dataset to `./data/census` from [here](https://archive.ics.uci.edu/ml/datasets/Census+Income).
2. Run the following command:
```bash
# Spark local mode
${ANALYTICS_ZOO_HOME}/bin/spark-submit-scala-with-zoo.sh \
--master local[2] \
--class com.intel.analytics.zoo.examples.recommendation.WideAndDeepExample \
dist/lib/analytics-zoo-bigdl_0.12.1-spark_2.4.3-0.9.0-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.9.0
--inputDir ./data/census \
--batchSize 320 \
--maxEpoch 20 \
--dataset census
# Spark standalone mode
${ANALYTICS_ZOO_HOME}/bin/spark-submit-scala-with-zoo.sh \
--master spark://... \ #add your spark master address
--executor-cores cores_per_executor \
--total-executor-cores total_cores_for_the_job \
--class com.intel.analytics.zoo.examples.recommendation.WideAndDeepExample \
dist/lib/analytics-zoo-bigdl_0.12.1-spark_2.4.3-0.9.0-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.9.0
--inputDir ./data/census \
--batchSize 320 \
--maxEpoch 20 \
--dataset census
# Spark yarn client mode, please make sure the right HADOOP_CONF_DIR is set
${ANALYTICS_ZOO_HOME}/bin/spark-submit-scala-with-zoo.sh \
--master yarn \
--deploy-mode client \
--executor-cores cores_per_executor \
--num-executors executors_number \
--class com.intel.analytics.zoo.examples.recommendation.WideAndDeepExample \
dist/lib/analytics-zoo-bigdl_0.12.1-spark_2.4.3-0.9.0-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.9.0
--inputDir ./data/census \
--batchSize 320 \
--maxEpoch 20 \
--dataset census
# Spark yarn cluster mode, please make sure the right HADOOP_CONF_DIR is set
${ANALYTICS_ZOO_HOME}/bin/spark-submit-scala-with-zoo.sh \
--master yarn \
--deploy-mode cluster \
--executor-cores cores_per_executor \
--num-executors executors_number \
--class com.intel.analytics.zoo.examples.recommendation.WideAndDeepExample \
dist/lib/analytics-zoo-bigdl_0.12.1-spark_2.4.3-0.9.0-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.9.0
--inputDir ./data/census \
--batchSize 320 \
--maxEpoch 20 \
--dataset census
```
---
### **2. Build Analytics Zoo Applications**
This section will show you how to build your own deep learning project with Analytics Zoo.
#### **2.1 Add Analytics Zoo dependency**
##### **2.1.1 official Release**
Currently, Analytics Zoo releases are hosted on maven central; below is an example to add the Analytics Zoo dependency to your own project:
```xml
com.intel.analytics.zoo
analytics-zoo-bigdl_0.12.1-spark_2.4.3
0.9.0
```
You can find the other SPARK version [here](https://search.maven.org/search?q=analytics-zoo-bigdl), such as `spark_2.1.1`, `spark_2.2.1`, `spark_2.3.1`, `spark_3.0.0`.
SBT developers can use
```sbt
libraryDependencies += "com.intel.analytics.zoo" % "analytics-zoo-bigdl_0.12.1-spark_2.4.3" % "0.9.0"
```
##### **2.1.2 Nightly Build**
Currently, Analytics Zoo nightly build is hosted on [SonaType](https://oss.sonatype.org/content/groups/public/com/intel/analytics/zoo/).
To link your application with the latest Analytics Zoo nightly build, you should add some dependencies like [official releases](#11-official-release), but change `0.9.0` to the snapshot version (such as 0.10.0-snapshot), and add below repository to your pom.xml.
```xml
sonatype
sonatype repository
https://oss.sonatype.org/content/groups/public/
true
true
```
SBT developers can use
```sbt
resolvers += "ossrh repository" at "https://oss.sonatype.org/content/repositories/snapshots/"
```
#### **2.2 Build a Scala project**
To enable Analytics Zoo in project, you should add Analytics Zoo to your project's dependencies using maven or sbt. Here is a [simple MLP example](https://github.com/intel-analytics/zoo-tutorials/tree/master/scala/SimpleMlp) to show you how to use Analytics Zoo to build your own deep learning project using maven or sbt, and how to run the simple example in IDEA and spark-submit.