# Aquila2 In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Aquila2 models. For illustration purposes, we utilize the [BAAI/AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B) as reference Aquila2 models. ## Requirements To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a Aquila2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. ### 1. Install We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). After installing conda, create a Python environment for BigDL-LLM: ```bash conda create -n llm python=3.9 # recommend to use Python 3.9 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` ```bash python ./generate.py --prompt 'AI是什么?' ``` In the example, several arguments can be passed to satisfy your requirements: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Aquila2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'BAAI/AquilaChat2-7B'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### 2.3 Sample Output #### [BAAI/AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B) ```log Inference time: xxxx s -------------------- Prompt -------------------- <|startofpiece|>AI是什么?<|endofpiece|> -------------------- Output -------------------- <|startofpiece|>AI是什么?<|endofpiece|>人工智能(Artificial Intelligence,简称AI)是计算机科学中一个极为重要的研究领域,旨在让计算机模仿人类的智能,包括学习、推理、识别物体 ```