# Finetuning LLAMA Using Q-Lora (experimental support) This example demonstrates how to finetune a llama2-7b model use Big-LLM 4bit optimizations using [Intel GPUs](../README.md). ## 0. Requirements To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Finetune llama2-7b using qlora This example is ported from [bnb-4bit-training](https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing). The `export_merged_model.py` is ported from [alpaca-lora](https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py). ### 1. Install ```bash conda create -n llm python=3.9 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu pip install datasets transformers==4.34.0 pip install peft==0.5.0 pip install accelerate==0.23.0 pip install bitsandbytes scipy ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Finetune model ``` python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH ``` #### Sample Output ```log {'loss': 1.6134, 'learning_rate': 0.0002, 'epoch': 0.03} {'loss': 1.3038, 'learning_rate': 0.00017777777777777779, 'epoch': 0.06} {'loss': 1.2634, 'learning_rate': 0.00015555555555555556, 'epoch': 0.1} {'loss': 1.2389, 'learning_rate': 0.00013333333333333334, 'epoch': 0.13} {'loss': 1.0399, 'learning_rate': 0.00011111111111111112, 'epoch': 0.16} {'loss': 1.0406, 'learning_rate': 8.888888888888889e-05, 'epoch': 0.19} {'loss': 1.3114, 'learning_rate': 6.666666666666667e-05, 'epoch': 0.22} {'loss': 0.9876, 'learning_rate': 4.4444444444444447e-05, 'epoch': 0.26} {'loss': 1.1406, 'learning_rate': 2.2222222222222223e-05, 'epoch': 0.29} {'loss': 1.1728, 'learning_rate': 0.0, 'epoch': 0.32} {'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32} 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [03:45<00:00, 1.13s/it] TrainOutput(global_step=200, training_loss=1.211241865158081, metrics={'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32}) ``` ### 4. Merge the adapter into the original model ``` python ./export_merged_model.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --adapter_path ./outputs/checkpoint-200 --output_path ./outputs/checkpoint-200-merged ``` Then you can use `./outputs/checkpoint-200-merged` as a normal huggingface transformer model to do inference.