# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import os import transformers from transformers import LlamaTokenizer from transformers import BitsAndBytesConfig from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training, LoraConfig from bigdl.llm.transformers import AutoModelForCausalLM from datasets import load_dataset import argparse from bigdl.llm.utils.isa_checker import ISAChecker if __name__ == "__main__": parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--dataset', type=str, default="Abirate/english_quotes") args = parser.parse_args() model_path = args.repo_id_or_model_path dataset_path = args.dataset tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) data = load_dataset(dataset_path) def merge(row): row['prediction'] = row['quote'] + ' ->: ' + str(row['tags']) return row data['train'] = data['train'].map(merge) # use the max_length to reduce memory usage, should be adjusted by different datasets data = data.map(lambda samples: tokenizer(samples["prediction"], max_length=256), batched=True) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_quant_type="int4", # nf4 not supported on cpu yet bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(model_path, quantization_config=bnb_config, ) # below is also supported # model = AutoModelForCausalLM.from_pretrained(model_path, # # nf4 not supported on cpu yet # load_in_low_bit="sym_int4", # optimize_model=False, # torch_dtype=torch.bfloat16, # modules_to_not_convert=["lm_head"], ) model = model.to('cpu') model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=False) model.enable_input_require_grads() config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, config) tokenizer.pad_token_id = 0 tokenizer.padding_side = "left" # To avoid only one core is used on client CPU isa_checker = ISAChecker() bf16_flag = isa_checker.check_avx512() trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=1, warmup_steps=20, max_steps=200, learning_rate=2e-4, save_steps=100, bf16=bf16_flag, logging_steps=20, output_dir="outputs", optim="adamw_hf", # paged_adamw_8bit is not supported yet # gradient_checkpointing=True, # can further reduce memory but slower ), # Inputs are dynamically padded to the maximum length of a batch data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! result = trainer.train() print(result)