# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import os import time import torch from bigdl.llm.transformers import AutoModel from transformers import AutoTokenizer class TestTransformersAPI(unittest.TestCase): def setUp(self): thread_num = os.environ.get('THREAD_NUM') if thread_num is not None: self.n_threads = int(thread_num) else: self.n_threads = 2 def test_transformers_int4(self): model_path = os.environ.get('ORIGINAL_CHATGLM_6B_PATH') model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) input_str = "晚上睡不着应该怎么办" with torch.inference_mode(): st = time.time() input_ids = tokenizer.encode(input_str, return_tensors="pt") output = model.generate(input_ids, do_sample=False, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) end = time.time() print('Prompt:', input_str) print('Output:', output_str) print(f'Inference time: {end-st} s') if __name__ == '__main__': unittest.main()