# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.generation import GenerationConfig import torch import time import os import argparse from ipex_llm import optimize_model if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for InternLM-XComposer model') parser.add_argument('--repo-id-or-model-path', type=str, default="internlm/internlm-xcomposer-vl-7b", help='The huggingface repo id for the InternLM-XComposer model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-path', type=str, required=True, help='Image path for the input image that the chat will focus on') parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path image = args.image_path # Load model model = AutoModelForCausalLM.from_pretrained(model_path, device='cpu', trust_remote_code=True) # With only one line to enable IPEX-LLM optimization on model # For successful IPEX-LLM optimization on InternLM-XComposer, skip the 'qkv' module during optimization model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=['qkv']) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model.tokenizer = tokenizer history = None while True: try: user_input = input("User: ") except EOFError: user_input = "" if not user_input: print("exit...") break response, history = model.chat(text=user_input, image=image , history = history) print(f'Bot: {response}', end="") image = None