# Running Lightweight Serving using IPEX-LLM on one Intel GPU ## Requirements To run this example with IPEX-LLM on one Intel GPU, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install fastapi uvicorn openai pip install gradio # for gradio web UI conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc ``` #### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install fastapi uvicorn openai pip install gradio # for gradio web UI conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc ``` ### 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 export BIGDL_LLM_XMX_DISABLED=1 ```
#### 3.2 Configurations for Windows
For Intel iGPU ```cmd set SYCL_CACHE_PERSISTENT=1 set BIGDL_LLM_XMX_DISABLED=1 ```
For Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running example ``` python ./lightweight_serving.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --low-bit LOW_BIT --port PORT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`. - `--low-bit LOW_BIT`: Sets the low bit optimizations (such as 'sym_int4', 'fp16', 'fp8' and 'fp6') for the model. It is default to be `sym_int4`. - `--port PORT`: The serving access port. It is default to be `8000`. ### 5. Sample Input and Output We can use `curl` to test serving api. And need to set no_proxy to ensure that requests are not forwarded by a proxy. `export no_proxy=localhost,127.0.0.1` #### /generate ```bash curl -X POST -H "Content-Type: application/json" -d '{ "inputs": "What is AI?", "parameters": { "max_new_tokens": 32, "min_new_tokens": 32, "repetition_penalty": 1.0, "temperature": 1.0, "do_sample": false, "top_k": 5, "tok_p": 1.0 }, "stream": false }' http://localhost:8000/generate ``` #### /generate_stream ```bash curl -X POST -H "Content-Type: application/json" -d '{ "inputs": "What is AI?", "parameters": { "max_new_tokens": 32, "min_new_tokens": 32, "repetition_penalty": 1.0, "temperature": 1.0, "do_sample": false, "top_k": 5, "tok_p": 1.0 }, "stream": false }' http://localhost:8000/generate_stream ``` #### /v1/chat/completions ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Llama-2-7b-chat-hf", "messages": [{"role": "user", "content": "Hello! What is your name?"}] }' ``` #### /v1/completions ```bash curl http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Llama-2-7b-chat-hf", "prompt": "Once upon a time", "max_tokens": 32 }' ``` ### 6. Benchmark with wrk Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#4-benchmark-with-wrk) for more details ## 7. Using the `benchmark.py` Script Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#5-using-the-benchmarkpy-script) for more details ## 8. Gradio Web UI Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#6-gradio-web-ui) for more details