# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere/modeling_cohere.py # coding=utf-8 # Copyright 2024 Cohere team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is based on the LLama model definition file in transformers """PyTorch Cohere model.""" import math import torch import torch.nn.functional as F import torch.nn as nn import torch.utils.checkpoint from typing import Optional, Tuple, List from ipex_llm.transformers.models.llama import repeat_kv from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36 from ipex_llm.transformers.models.utils import use_decoding_fast_path from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache from ipex_llm.transformers.kv import DynamicFp8Cache from ipex_llm.transformers.models.qwen2 import should_use_fuse_rope from transformers.modeling_outputs import BaseModelOutputWithPast from ipex_llm.utils.common import invalidInputError try: from transformers.cache_utils import Cache, DynamicCache except ImportError: Cache = Tuple[torch.Tensor] KV_CACHE_ALLOC_BLOCK_LENGTH = 256 def cohere_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ): use_cache = use_cache if use_cache is not None \ else self.config.use_cache if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids): if not isinstance(past_key_values, DynamicFp8Cache): past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) output_attentions = output_attentions if output_attentions is not None \ else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: invalidInputError(False, "You cannot specify both input_ids and inputs_embeds at the same time") if self.gradient_checkpointing and self.training and use_cache: invalidInputError(False, "`use_cache=True` is incompatible " "with gradient checkpointing. Setting `use_cache=False`.") use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) past_seen_tokens = 0 if use_cache: # kept for BC (cache positions) if not isinstance(past_key_values, Cache): past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_seen_tokens = past_key_values.get_seq_length() if cache_position is None: if isinstance(past_key_values, Cache): invalidInputError(False, "cache_position is a required argument when using Cache.") cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: # ipex-llm changes curr_device = decoder_layer.input_layernorm.weight.device if causal_mask is not None: causal_mask = causal_mask.to(curr_device) if position_ids is not None: position_ids = position_ids.to(curr_device) # ipex-llm changes end layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) def cohere_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache(self.q_proj, hidden_states): forward_function = cohere_attention_forward_quantized else: forward_function = cohere_attention_forward_origin return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) def cohere_attention_forward_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) if self.use_qk_norm: query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) past_key_value = getattr(self, "past_key_value", past_key_value) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs, new_layout=True) if q_len == 1 and query_states.device.type == 'xpu' and not self.training \ and not hidden_states.requires_grad: import linear_q4_0 attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask) attn_weights = None else: key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), "`attn_output` should be of size " f"{(bsz, self.num_heads, q_len, self.head_dim)}," f" but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def cohere_attention_forward_origin( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) decoding_fast_path = use_decoding_fast_path(self.q_proj, use_fuse_rope, enough_kv_room, bsz * q_len) if decoding_fast_path: hidden_states = hidden_states.view(1, -1) cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] kv_seq_len = cache_k.shape[-2] import linear_q4_0 query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight, position_ids, cache_k, cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len, self.head_dim, self.rotary_emb.base,) kv_seq_len += 1 # update past_key_value's seem_tokens and kv caches. if self.layer_idx == 0: past_key_value._seen_tokens = kv_seq_len past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) if self.use_qk_norm: query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) past_key_value = getattr(self, "past_key_value", past_key_value) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: invalidInputError( False, "The cache structure has changed since version v4.36. " f"If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, " "please make sure to initialize the attention class with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: if self.layer_idx == 0: past_key_value._seen_tokens += key_states.shape[-2] if len(past_key_value.key_cache) <= self.layer_idx: past_key_value.key_cache.append(key_states) past_key_value.value_cache.append(value_states) else: cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] if not enough_kv_room: # allocate new new_c_k, new_c_v = extend_kv_cache(bsz, self.num_key_value_heads, # Support GQA self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_c_k[:] = cache_k new_c_v[:] = cache_v cache_k = new_c_k cache_v = new_c_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) # update past_key_value past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if not self.training and not hidden_states.requires_grad and \ use_flash_attention(query_states, key_states, attention_mask): attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16), key_states.to(device, dtype=torch.float16), value_states.to(device, dtype=torch.float16), is_causal=True) attn_weights = None elif not self.training and not hidden_states.requires_grad and \ use_sdp(q_len, key_states.shape[2], self.head_dim, query_states): import linear_q4_0 if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] else: causal_mask = None attn_output = linear_q4_0.sdp(query_states, key_states, value_states, causal_mask) attn_output = attn_output.view(query_states.shape) attn_weights = None else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), "`attn_output` should be of size " f"{(bsz, self.num_heads, q_len, self.head_dim)}," f" but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(hidden_states.dtype), attn_weights, past_key_value