# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import torch import argparse import requests from PIL import Image from ipex_llm.transformers import AutoModelForCausalLM from transformers import AutoProcessor if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model') parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-vision-128k-instruct", help='The huggingface repo id for the phi-3-vision model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg", help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="What is in the image?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_url_or_path # Load model in FP8, # which convert the relevant layers in the model into FP8 format # We here use FP8 instead of INT4 for better output # You could also try `'sym_int4'` for INT4, `'sym_int8'` for INT8 and `'fp6'` for FP6 # `_attn_implementation="eager"` is required for phi-3-vision # `modules_to_not_convert=["vision_embed_tokens"]` and `model = model.half()` are for acceleration and are optional # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_low_bit="fp8", _attn_implementation="eager", modules_to_not_convert=["vision_embed_tokens"]) model = model.half().to('xpu') # Load processor processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) # here the message formatting refers to https://huggingface.co/microsoft/Phi-3-vision-128k-instruct#sample-inference-code messages = [ {"role": "user", "content": "<|image_1|>\n{prompt}".format(prompt=args.prompt)}, ] prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) if os.path.exists(image_path): image = Image.open(image_path) else: image = Image.open(requests.get(image_path, stream=True).raw) # Generate predicted tokens with torch.inference_mode(): # ipex_llm model needs a warmup, then inference time can be accurate inputs = processor(prompt, [image], return_tensors="pt") inputs = inputs.to('xpu') output = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, temperature=0.0) # start inference st = time.time() inputs = processor(prompt, [image], return_tensors="pt") inputs = inputs.to('xpu') output = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, temperature=0.0) end = time.time() print(f'Inference time: {end-st} s') output_str = processor.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print('-'*20, 'Prompt', '-'*20) print(f'Message: {messages}') print(f'Image link/path: {image_path}') print('-'*20, 'Output', '-'*20) print(output_str)