# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This would makes sure Python is aware there is more than one sub-package within bigdl, # physically located elsewhere. # Otherwise there would be module not found error in non-pip's setting as Python would # only search the first bigdl package and end up finding only one sub-package. # Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html import argparse from langchain.vectorstores import Chroma from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT, QA_PROMPT) from langchain.text_splitter import CharacterTextSplitter from langchain.chains.question_answering import load_qa_chain from langchain.callbacks.manager import CallbackManager from bigdl.llm.langchain.llms import TransformersLLM from bigdl.llm.langchain.embeddings import TransformersEmbeddings text_doc = ''' BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries: LLM: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray Nano: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU DLlib: “Equivalent of Spark MLlib” for Deep Learning Chronos: Scalable Time Series Analysis using AutoML Friesian: End-to-End Recommendation Systems PPML: Secure Big Data and AI (with SGX Hardware Security) ''' def main(args): input_path = args.input_path model_path = args.model_path query = args.question # split texts of input doc if input_path is None: input_doc = text_doc else: with open(input_path) as f: input_doc = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(input_doc) # create embeddings and store into vectordb embeddings = TransformersEmbeddings.from_model_id( model_id=model_path, model_kwargs={"trust_remote_code": True} ) docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() #get relavant texts docs = docsearch.get_relevant_documents(query) bigdl_llm = TransformersLLM.from_model_id( model_id=model_path, model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True}, ) doc_chain = load_qa_chain( bigdl_llm, chain_type="stuff", prompt=QA_PROMPT ) output = doc_chain.run(input_documents=docs, question=query) print(output) if __name__ == '__main__': parser = argparse.ArgumentParser(description='TransformersLLM Langchain QA over Docs Example') parser.add_argument('-m','--model-path', type=str, required=True, help='the path to transformers model') parser.add_argument('-i', '--input-path', type=str, help='the path to the input doc.') parser.add_argument('-q', '--question', type=str, default='What is BigDL?', help='qustion you want to ask.') args = parser.parse_args() main(args)