# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import os from ipex_llm.transformers.npu_model import AutoModelForCausalLM from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument("--lowbit-path", type=str, default="", help='The path to the lowbit model folder, leave blank if you do not want to save. \ If path not exists, lowbit model will be saved there. \ Else, lowbit model will be loaded.') parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--load_in_low_bit', type=str, default="sym_int8", help='Load in low bit to use') args = parser.parse_args() model_path = args.repo_id_or_model_path tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) if not args.lowbit_path or not os.path.exists(args.lowbit_path): model = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, load_in_low_bit=args.load_in_low_bit, attn_implementation="eager" ) else: model = AutoModelForCausalLM.load_low_bit( args.lowbit_path, trust_remote_code=True, bigdl_transformers_low_bit=args.load_in_low_bit, attn_implementation="eager" ) print(model) if args.lowbit_path and not os.path.exists(args.lowbit_path): model.save_low_bit(args.lowbit_path) with torch.inference_mode(): input_ids = tokenizer.encode(args.prompt, return_tensors="pt") print("finish to load") print('input length:', len(input_ids[0])) st = time.time() output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict) end = time.time() print(f'Inference time: {end-st} s') output_str = tokenizer.decode(output[0], skip_special_tokens=False) print('-'*20, 'Output', '-'*20) print(output_str) print('-'*80) print('done')