# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import time import torch import intel_extension_for_pytorch as ipex from ipex_llm import optimize_model from transformers import AutoTokenizer from model import MambaLMHeadModel if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mamba model') parser.add_argument('--repo-id-or-model-path', type=str, default="state-spaces/mamba-1.4b", help='The huggingface repo id for the Mamba model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--tokenizer-repo-id-or-path', type=str, default="EleutherAI/gpt-neox-20b", help='The huggingface repo id for the Mamba tokenizer to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path tokenizer_path = args.tokenizer_repo_id_or_path # Load model model = MambaLMHeadModel.from_pretrained(model_path) # With only one line to enable IPEX-LLM optimization on model model = optimize_model(model, low_bit='asym_int4', modules_to_not_convert=["dt_proj", "x_proj"]) model = model.to('xpu') # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) # Generate predicted tokens with torch.inference_mode(): input_ids = tokenizer.encode(args.prompt, return_tensors="pt").to('xpu') # ipex_llm model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict) st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output = output.cpu() output_str = tokenizer.decode(output[0]) print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(output_str)