# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is adapted from # https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/cb7fc748b78b7ea99772e4cf76db155729ce774e/modeling_baichuan.py # and # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py import math from typing import Optional, Tuple import torch import torch.utils.checkpoint from torch.nn import functional as F from ipex_llm.ggml.quantize import ggml_tensor_qtype from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \ restore_fp8_kv_cache, use_quantize_kv_cache from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \ append_kv_cache, is_enough_kv_cache_room_4_31 from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu from ipex_llm.transformers.models.utils import mlp_fusion_check from transformers.utils import logging logger = logging.get_logger(__name__) try: from xformers import ops as xops except ImportError: xops = None logger.warning( "Xformers is not installed correctly. If you want to use memory_efficient_attention to " "accelerate training use the following command to install Xformers\npip install xformers." ) KV_CACHE_ALLOC_BLOCK_LENGTH = 256 def baichuan_13b_rms_norm_forward(self, hidden_states): if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad): import linear_q4_0 x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous() output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon) if 1 < x_2d.size(0) <= 64: # may use XMX, need copy output = output.clone() return output.reshape(hidden_states.shape) input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon) return self.weight * hidden_states.to(input_dtype) def baichuan_mlp_forward( self, x: torch.Tensor, ) -> torch.Tensor: x_2d = x.view(-1, x.shape[-1]) qtype = getattr(self.gate_proj, "qtype", None) if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla: import linear_q4_0 if not x_2d.is_contiguous(): x_2d = x_2d.contiguous() return self.down_proj(linear_q4_0.mlp_forward_xpu( x_2d, self.gate_proj.weight.data, self.up_proj.weight.data, x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len, SILU, qtype )) return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) def baichuan_attention_forward_7b( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache(self.W_pack, hidden_states): forward_function = baichuan_attention_forward_7b_quantized else: forward_function = baichuan_attention_forward_7b_origin return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache ) def baichuan_attention_forward_7b_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = torch.chunk(proj, 3, -1) # batch_size x source_len x hidden_size query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x target_len x head_size key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x source_len x hidden_size value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, "baichuan") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "baichuan") if past_key_value is None: kv_seq_len = key_states.shape[-2] k_cache, v_cache = init_fp8_kv_cache( bsz, self.num_heads, kv_seq_len, self.head_dim, device=device, new_layout=True ) else: k_cache, v_cache = past_key_value key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states, new_layout=True) past_key_value = (key_states, value_states) if use_cache else None if attention_mask is not None: if attention_mask.dtype == torch.bool: attention_mask.masked_fill_(attention_mask.logical_not(), float("-inf")) scaling_factor = 1 / math.sqrt(query_states.size(-1)) if query_states.size(2) != 1 or device.type != 'xpu': key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1)) if attention_mask is not None: attn_output += attention_mask attn_output = torch.softmax(attn_output, -1) attn_output = attn_output.to(hidden_states.dtype) attn_output = torch.matmul(attn_output, value_states) else: import linear_q4_0 attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask) attn_weights = None attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def baichuan_attention_forward_7b_origin( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = torch.chunk(proj, 3, -1) # batch_size x source_len x hidden_size query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x target_len x head_size key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x source_len x hidden_size value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] enough_kv_room = True if past_key_value is not None: enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len) kv_seq_len += past_key_value[0].shape[-2] if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, "baichuan") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "baichuan") # [bsz, nh, t, hd] # if past_key_value is not None: # # reuse k, v, self_attention # key_states = torch.cat([past_key_value[0], key_states], dim=2) # value_states = torch.cat([past_key_value[1], value_states], dim=2) if past_key_value is not None: # reuse k, v, self_attention cache_k = past_key_value[0] cache_v = past_key_value[1] if not enough_kv_room: # allocate new new_cache_k, new_cache_v = extend_kv_cache(bsz, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache(bsz, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_states.dtype, device=device) new_key_states[:] = key_states new_value_states[:] = value_states key_states = new_key_states value_states = new_value_states past_key_value = (key_states, value_states) if use_cache else None if xops is not None and self.training: attn_weights = None query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = xops.memory_efficient_attention( query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask() ) else: if not self.training and not hidden_states.requires_grad and \ use_flash_attention(query_states, key_states, attention_mask): attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16), key_states.to(dtype=torch.float16), value_states.to(dtype=torch.float16), is_causal=True) attn_weights = None elif not self.training and not hidden_states.requires_grad and \ use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states): import linear_fp16_esimd attn_output = linear_fp16_esimd.sdp_forward(query_states, key_states, value_states) attn_output = attn_output.view(query_states.shape) attn_weights = None else: if attention_mask is not None: if attention_mask.dtype == torch.bool: attention_mask.masked_fill_(attention_mask.logical_not(), float("-inf")) scaling_factor = 1 / math.sqrt(query_states.size(-1)) attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1)) if attention_mask is not None: attn_output += attention_mask attn_output = torch.softmax(attn_output, -1) attn_output = torch.matmul(attn_output, value_states) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(hidden_states.dtype), attn_weights, past_key_value def baichuan_attention_forward_13b( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache(self.W_pack, hidden_states): forward_function = baichuan_attention_forward_13b_quantized else: forward_function = baichuan_attention_forward_13b_origin return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) def baichuan_attention_forward_13b_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = ( proj.unflatten(-1, (3, self.hidden_size)) .unsqueeze(0) .transpose(0, -2) .squeeze(-2) ) query_states = ( proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) ) key_states = ( proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) ) value_states = ( proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) ) if past_key_value is None: kv_seq_len = key_states.shape[-2] k_cache, v_cache = init_fp8_kv_cache( bsz, self.num_heads, kv_seq_len, self.head_dim, device=device ) else: k_cache, v_cache = past_key_value key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states) past_key_value = (key_states, value_states) if query_states.size(2) != 1 or device.type != 'xpu': key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) else: import linear_q4_0 attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states) attn_weights = attn_weights / math.sqrt(self.head_dim) if attention_mask is not None: if q_len == 1: # inference with cache if len(attention_mask.size()) == 4: attention_mask = attention_mask[:, :, -1:, :] else: attention_mask = attention_mask[:, -1:, :] attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights.to(hidden_states.dtype) if query_states.size(2) != 1 or device.type != 'xpu': attn_output = torch.matmul(attn_weights, value_states) else: import linear_q4_0 attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states.transpose(-1, -2)) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def baichuan_attention_forward_13b_origin( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = ( proj.unflatten(-1, (3, self.hidden_size)) .unsqueeze(0) .transpose(0, -2) .squeeze(-2) ) query_states = ( proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) ) key_states = ( proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) ) value_states = ( proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) ) kv_seq_len = key_states.shape[-2] enough_kv_room = True if past_key_value is not None: enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len) kv_seq_len += past_key_value[0].shape[-2] # if past_key_value is not None: # # reuse k, v, self_attention # key_states = torch.cat([past_key_value[0], key_states], dim=2) # value_states = torch.cat([past_key_value[1], value_states], dim=2) if past_key_value is not None: # reuse k, v, self_attention cache_k = past_key_value[0] cache_v = past_key_value[1] if not enough_kv_room: if device.type == 'xpu': torch.xpu.empty_cache() # allocate new new_cache_k, new_cache_v = extend_kv_cache(bsz, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache(bsz, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_states.dtype, device=device) new_key_states[:] = key_states new_value_states[:] = value_states key_states = new_key_states value_states = new_value_states past_key_value = (key_states, value_states) if use_cache else None if xops is not None and self.training: attn_weights = None # query_states = query_states.transpose(1, 2) # key_states = key_states.transpose(1, 2) # value_states = value_states.transpose(1, 2) # attn_output = xops.memory_efficient_attention( # query_states, key_states, value_states, attn_bias=attention_mask # ) with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True): attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask) attn_output = attn_output.transpose(1, 2) else: attn_weights = torch.matmul( query_states.to(dtype=key_states.dtype), key_states.transpose(2, 3) ) / math.sqrt(self.head_dim) if attention_mask is not None: if q_len == 1: # inference with cache if len(attention_mask.size()) == 4: attention_mask = attention_mask[:, :, -1:, :] else: attention_mask = attention_mask[:, -1:, :] if attention_mask.shape[-2] == attn_weights.shape[-2]: attn_weights = attn_weights + attention_mask else: # support for Baichuan/Baichuan2 13B Chat running speculative decoding # split attention mask on dim -2 split_sizes = [attention_mask.shape[-2] - attn_weights.shape[-2], attn_weights.shape[-2]] # the last chunk of splited is the new attention mask attention_mask = attention_mask.split(split_sizes, dim=-2)[-1] attn_weights = attn_weights + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) ) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _get_interleave(n): def _get_interleave_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio**i for i in range(n)] if math.log2(n).is_integer(): return _get_interleave_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) return ( _get_interleave_power_of_2(closest_power_of_2) + _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] ) def _fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def _buffered_future_mask(tensor, maxpos, alibi, attn_heads): _future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1) _future_mask = _future_mask.unsqueeze(0) + alibi new_future_mask = _future_mask.to(tensor) return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos] def baichuan_13b_gen_alibi_mask(tensor, n_head, max_pos): # May use fp16 for alibi mask to further reduce memory slopes = torch.Tensor(_get_interleave(n_head)) # .half() position_point = torch.arange(max_pos) - max_pos + 1 position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1) diag = torch.diag(position_point[0]) position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2) alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point alibi = alibi.view(n_head, 1, max_pos) alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1) # .half() alibi_mask = alibi_mask.unsqueeze(0) + alibi if tensor.device.type == "xpu": alibi_mask = alibi_mask.to(tensor.device) return alibi_mask MASK_BLOCK_SIZE = 512 def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past): if self.training: slopes = torch.Tensor(_get_interleave(self.n_head)) position_point = ( torch.arange(seq_length_with_past) - seq_length_with_past + 1 ) position_point = ( position_point.unsqueeze(0) .unsqueeze(0) .expand(self.n_head, seq_length_with_past, -1) ) diag = torch.diag(position_point[0]) position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose( -1, -2 ) alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point mask = _buffered_future_mask( tensor, seq_length_with_past, alibi, self.n_head ) else: if self.first_run: # Override the default max_cache_pos=4096 for memory considerations self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE self.first_run = False self.register_buffer( "future_mask", baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos), persistent=False, ) if seq_length_with_past > self.max_cache_pos: # When max_cache_pos is not enough for current sequence length, # increase by MASK_BLOCK_SIZE and recalculate future_mask. self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE self.register_buffer( "future_mask", baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos), persistent=False, ) mask = self.future_mask[ : self.n_head, :seq_length_with_past, :seq_length_with_past ] return mask