# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import argparse import requests import torch from PIL import Image from ipex_llm.transformers import AutoModelForCausalLM from transformers import CLIPImageProcessor if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model') parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B", help='The Hugging Face or ModelScope repo id for the InternVL2 model to be downloaded' ', or the path to the checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="What is in the image?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict') parser.add_argument('--modelscope', action="store_true", default=False, help="Use models from modelscope") args = parser.parse_args() if args.modelscope: from modelscope import AutoTokenizer model_hub = 'modelscope' else: from transformers import AutoTokenizer model_hub = 'huggingface' model_path = args.repo_id_or_model_path image_path = args.image_url_or_path n_predict = args.n_predict # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_low_bit="sym_int4", modules_to_not_convert=["vision_model"], model_hub=model_hub) model = model.half().to('xpu') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model.eval() query = args.prompt image_processor = CLIPImageProcessor.from_pretrained(model_path) if os.path.exists(image_path): image = Image.open(image_path).convert('RGB') else: image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values pixel_values = pixel_values.to('xpu') question = "" + query generation_config = { "max_new_tokens": n_predict, "do_sample": False, } with torch.inference_mode(): # ipex_llm model needs a warmup, then inference time can be accurate model.chat( pixel_values=None, question=question, generation_config=generation_config, tokenizer=tokenizer, ) st = time.time() res = model.chat( tokenizer=tokenizer, pixel_values=pixel_values, question=question, generation_config=generation_config, history=[] ) torch.xpu.synchronize() end = time.time() print(f'Inference time: {end-st} s') print('-'*20, 'Input Image', '-'*20) print(image_path) print('-'*20, 'Input Prompt', '-'*20) print(args.prompt) print('-'*20, 'Chat Output', '-'*20) print(res)