# Qwen-VL In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen-VL models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model. ## Requirements To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Multimodal chat using `chat()` API In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM 'optimize_model' API on Intel GPUs. ### 1. Install We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). After installing conda, create a Python environment for BigDL-LLM: ```bash conda create -n llm python=3.9 # recommend to use Python 3.9 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` ``` python ./chat.py ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen-VL model (e.g `Qwen/Qwen-VL-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge. Every image output will be named as the round of session and placed under the current directory. #### Sample Chat #### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) ```log -------------------- Session 1 -------------------- Please input a picture: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg Please enter the text: 这是什么? ---------- Response ---------- 这是一张图片,展现了一个穿着粉色条纹连衣裙的小女孩,她手持一只穿粉色裙子的小熊。这个场景发生在一个户外环境,有砖块背景墙和花朵。 -------------------- Session 2 -------------------- Please input a picture: Please enter the text: 这个小女孩多大了? ---------- Response ---------- 根据图片中的描述,这个小女孩应该是年龄较小的孩子,但具体年龄难以确定。从她的外表来看,可能是在5岁左右。。 -------------------- Session 3 -------------------- Please input a picture: Please enter the text: 在图中检测框出玩具熊 ---------- Response ---------- 玩具熊(330,267),(603,869) -------------------- Session 4 -------------------- Please input a picture: exit ``` The sample input image in Session 1 is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): The sample output image in Session 3 is: