# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is adapted from # https://huggingface.co/baichuan-inc/Baichuan-7B/blob/c1a5c7d5b7f50ecc51bb0e08150a9f12e5656756/modeling_baichuan.py # and # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/a4a558127068f2ce965aa56aeb826bf501a68970/modeling_baichuan.py import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \ append_kv_cache, is_enough_kv_cache_room_4_31 from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \ restore_fp8_kv_cache, use_quantize_kv_cache from ipex_llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu import os KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) def baichuan_attention_forward_7b( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache(self.W_pack, hidden_states): forward_function = baichuan_attention_forward_7b_quantized else: forward_function = baichuan_attention_forward_7b_origin return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache ) def baichuan_attention_forward_7b_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) # batch_size x source_len x hidden_size query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x target_len x head_size key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x source_len x hidden_size value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, "baichuan") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "baichuan") # [bsz, nh, t, hd] if past_key_value is None: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): invalidInputError( False, f"Attention weights should be of size " f"{(bsz, self.num_heads, q_len, kv_seq_len)}" f", but is {attn_weights.size()}" ) if attention_mask is not None: invalidInputError( attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) kv_seq_len = key_states.shape[-2] if use_cache: k_cache, v_cache = init_fp8_kv_cache( bsz, self.num_heads, kv_seq_len, self.head_dim, device=device, new_layout=True ) key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states, new_layout=True) past_key_value = (key_states, value_states) else: k_cache, v_cache = past_key_value key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states, new_layout=True) kv_seq_len = key_states.shape[-2] past_key_value = (key_states, value_states) if query_states.size(2) != 1 or query_states.device.type != 'xpu': key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) attn_weights = attn_weights / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): invalidInputError( False, f"Attention weights should be of size " f"{(bsz, self.num_heads, q_len, kv_seq_len)}" f", but is {attn_weights.size()}" ) if attention_mask is not None: invalidInputError( attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) else: import linear_q4_0 attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask) attn_weights = None invalidInputError( attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), f"`attn_output` should be of size " f"{(bsz, self.num_heads, q_len, self.head_dim)}," f"but is {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(hidden_states.dtype), attn_weights, past_key_value def baichuan_attention_forward_7b_origin( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) # batch_size x source_len x hidden_size query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x target_len x head_size key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # batch_size x source_len x hidden_size value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] enough_kv_room = True if past_key_value is not None: enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len) kv_seq_len += past_key_value[0].shape[-2] if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, "baichuan") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "baichuan") # [bsz, nh, t, hd] # if past_key_value is not None: # # reuse k, v, self_attention # key_states = torch.cat([past_key_value[0], key_states], dim=2) # value_states = torch.cat([past_key_value[1], value_states], dim=2) if past_key_value is not None: # reuse k, v, self_attention cache_k = past_key_value[0] cache_v = past_key_value[1] if not enough_kv_room: # allocate new new_cache_k, new_cache_v = extend_kv_cache(bsz, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache(bsz, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_states.dtype, device=device) new_key_states[:] = key_states new_value_states[:] = value_states key_states = new_key_states value_states = new_value_states past_key_value = (key_states, value_states) if use_cache else None if not self.training and not hidden_states.requires_grad and \ use_flash_attention(query_states, key_states, attention_mask): attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16), key_states.to(device, dtype=torch.float16), value_states.to(device, dtype=torch.float16), is_causal=True) attn_weights = None elif not self.training and not hidden_states.requires_grad and \ use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states): import linear_fp16_esimd attn_output = linear_fp16_esimd.sdp_forward(query_states, key_states, value_states) attn_output = attn_output.view(query_states.shape) attn_weights = None else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): invalidInputError(False, f"Attention weights should be of size " f"{(bsz, self.num_heads, q_len, kv_seq_len)}" f", but is {attn_weights.size()}") if attention_mask is not None: invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), f"`attn_output` should be of size " f"{(bsz, self.num_heads, q_len, self.head_dim)}," f"but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(hidden_states.dtype), attn_weights, past_key_value def baichuan_attention_forward_13b( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache(self.W_pack, hidden_states): forward_function = baichuan_attention_forward_13b_quantized else: forward_function = baichuan_attention_forward_13b_origin return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache ) def baichuan_attention_forward_13b_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if past_key_value is None: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: if q_len == 1: # inference with cache if len(attention_mask.size()) == 4: attention_mask = attention_mask[:, :, -1:, :] else: attention_mask = attention_mask[:, -1:, :] attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_output = torch.matmul(attn_weights, value_states) kv_seq_len = key_states.shape[-2] if use_cache: k_cache, v_cache = init_fp8_kv_cache( bsz, self.num_heads, kv_seq_len, self.head_dim, device=device ) key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states) past_key_value = (key_states, value_states) else: k_cache, v_cache = past_key_value key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states) kv_seq_len = key_states.shape[-2] past_key_value = (key_states, value_states) if query_states.size(2) != 1 or query_states.device.type != 'xpu': key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) else: import linear_q4_0 attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states) attn_weights = attn_weights / math.sqrt(self.head_dim) if attention_mask is not None: if q_len == 1: # inference with cache if len(attention_mask.size()) == 4: attention_mask = attention_mask[:, :, -1:, :] else: attention_mask = attention_mask[:, -1:, :] attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) if query_states.size(2) != 1 or query_states.device.type != 'xpu': attn_output = torch.matmul(attn_weights, value_states) else: import linear_q4_0 attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states.transpose(-1, -2)) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def baichuan_attention_forward_13b_origin( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device proj = self.W_pack(hidden_states) proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] enough_kv_room = True if past_key_value is not None: enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len) kv_seq_len += past_key_value[0].shape[-2] # if past_key_value is not None: # # reuse k, v, self_attention # key_states = torch.cat([past_key_value[0], key_states], dim=2) # value_states = torch.cat([past_key_value[1], value_states], dim=2) if past_key_value is not None: # reuse k, v, self_attention cache_k = past_key_value[0] cache_v = past_key_value[1] if not enough_kv_room: # allocate new new_cache_k, new_cache_v = extend_kv_cache(bsz, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache(bsz, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_states.dtype, device=device) new_key_states[:] = key_states new_value_states[:] = value_states key_states = new_key_states value_states = new_value_states past_key_value = (key_states, value_states) if use_cache else None attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: if q_len == 1: # inference with cache if len(attention_mask.size()) == 4: attention_mask = attention_mask[:, :, -1:, :] else: attention_mask = attention_mask[:, -1:, :] attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(hidden_states.dtype), attn_weights, past_key_value