# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm.transformers import AutoModelForSpeechSeq2Seq from transformers import WhisperProcessor from datasets import load_dataset if __name__ == '__main__': parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model') parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny", help='The huggingface repo id for the Whisper model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--repo-id-or-data-path', type=str, default="hf-internal-testing/librispeech_asr_dummy", help='The huggingface repo id for the audio dataset to be downloaded' ', or the path to the huggingface dataset folder') parser.add_argument('--language', type=str, default="english", help='language to be transcribed') args = parser.parse_args() model_path = args.repo_id_or_model_path dataset_path = args.repo_id_or_data_path language = args.language # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, load_in_4bit=True) model.config.forced_decoder_ids = None # Load processor processor = WhisperProcessor.from_pretrained(model_path) forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe") # Load dummy dataset and read audio files ds = load_dataset(dataset_path, "clean", split="validation") # Generate predicted tokens with torch.inference_mode(): sample = ds[0]["audio"] input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features st = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with BigDL-LLM INT4 optimizations predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) end = time.time() output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(output_str)