# Langchain examples The examples here shows how to use langchain with `bigdl-llm`. ## Install bigdl-llm Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install). ## Install Required Dependencies for langchain examples. ```bash pip install langchain==0.0.184 pip install -U chromadb==0.3.25 pip install -U typing_extensions==4.5.0 ``` Note that typing_extensions==4.5.0 is required, or you may encounter error `TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers'` when running the examples. ## Convert Models using bigdl-llm Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model). ## Run the examples ### 1. Streaming Chat ```bash python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model - `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom` - `-q QUESTION`: question to ask. Default is `What is AI?`. - `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`. ### 2. Question Answering over Docs ```bash python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step - `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom` - `-i DOC_PATH`: **required**, path to the input document - `-q QUESTION`: question to ask. Default is `What is AI?`. - `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`. - `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`. ### 3. Voice Assistant > This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change. Some extra dependencies are required to be installed for this example. ```bash pip install SpeechRecognition pip install pyttsx3 pip install PyAudio pip install whisper.ai pip install soundfile ``` ```bash python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model - `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom` - `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`. When you see output says > listening now... Please say something through your microphone (e.g. What is AI). The programe will automatically detect when you have completed your speech and recogize them. ### 4. Math This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b). ```bash python transformers_int4/math.py -m MODEL_PATH -q QUESTION ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model - `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.