# LangChain API You may run the models using the LangChain API in `ipex-llm`. ## Using Hugging Face `transformers` INT4 Format You may run any Hugging Face *Transformers* model (with INT4 optimiztions applied) using the LangChain API as follows: ```python from ipex_llm.langchain.llms import TransformersLLM from ipex_llm.langchain.embeddings import TransformersEmbeddings from langchain.chains.question_answering import load_qa_chain embeddings = TransformersEmbeddings.from_model_id(model_id=model_path) ipex_llm = TransformersLLM.from_model_id(model_id=model_path, ...) doc_chain = load_qa_chain(ipex_llm, ...) output = doc_chain.run(...) ``` > [!TIP] > See the examples [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/LangChain/transformers_int4) ## Using Native INT4 Format You may also convert Hugging Face *Transformers* models into native INT4 format, and then run the converted models using the LangChain API as follows. > [!NOTE] > - Currently only llama/bloom/gptneox/starcoder model families are supported; for other models, you may use the Hugging Face ``transformers`` INT4 format as described [above](./langchain_api.md#using-hugging-face-transformers-int4-format). > - You may choose the corresponding API developed for specific native models to load the converted model. ```python from ipex_llm.langchain.llms import LlamaLLM from ipex_llm.langchain.embeddings import LlamaEmbeddings from langchain.chains.question_answering import load_qa_chain # switch to GptneoxEmbeddings/BloomEmbeddings/StarcoderEmbeddings to load other models embeddings = LlamaEmbeddings(model_path='/path/to/converted/model.bin') # switch to GptneoxLLM/BloomLLM/StarcoderLLM to load other models ipex_llm = LlamaLLM(model_path='/path/to/converted/model.bin') doc_chain = load_qa_chain(ipex_llm, ...) doc_chain.run(...) ``` > [!TIP] > See the examples [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/LangChain/native_int4) for more information.