# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import numpy as np from transformers import AutoTokenizer, GenerationConfig from ipex_llm import optimize_model # you could tune the prompt based on your own model, # here the prompt tuning refers to # TODO: https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_mixformer_sequential.py PHI1_5_PROMPT_FORMAT = " Question:{prompt}\n\n Answer:" generation_config = GenerationConfig(use_cache = True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phixtral model') parser.add_argument('--repo-id-or-model-path', type=str, default="mlabonne/phixtral-4x2_8", help='The huggingface repo id for the phi model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) model = optimize_model(model) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = PHI1_5_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt") st = time.time() # Note that phixtral uses GenerationConfig to enable 'use_cache' output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)