# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import transformers import deepspeed local_rank = int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) from bigdl.llm import optimize_model import torch import time import argparse from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it from transformers import LlamaTokenizer, AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path model = AutoModelForCausalLM.from_pretrained(args.repo_id_or_model_path, low_cpu_mem_usage=True, torch_dtype=torch.float16, trust_remote_code=True, use_cache=True) model = deepspeed.init_inference( model, mp_size=world_size, dtype=torch.float16, replace_method="auto", ) # move model to cpu and use bigdl-llm `optimize_model` to convert the # model into optimized low bit format # convert the rest of the model into float16 to reduce allreduce traffic model = optimize_model(model.module.to(f'cpu'), low_bit='sym_int4').to(torch.float16) # move model back to xpu model = model.to(f'xpu:{local_rank}') print(model) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): # prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT) prompt = args.prompt # input_str = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:\n" input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}') # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict, use_cache=True) # start inference st = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with BigDL-LLM INT4 optimizations output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() if local_rank == 0: output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)