# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from transformers import BertTokenizer, BertModel from bigdl.llm import optimize_model if __name__ == '__main__': parser = argparse.ArgumentParser(description='Extract the feature of given text using BERT model') parser.add_argument('--repo-id-or-model-path', type=str, default="bert-large-uncased", help='The huggingface repo id for the BERT (e.g. `bert-large-uncased`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--text', type=str, default="This is an example text for feature extraction.", help='Text to extract features') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model model = BertModel.from_pretrained(model_path, torch_dtype="auto", low_cpu_mem_usage=True) # With only one line to enable BigDL-LLM optimization on model model = optimize_model(model) # Load tokenizer tokenizer = BertTokenizer.from_pretrained(model_path) # Extract the feature of given text text = args.text encoded_input = tokenizer(text, return_tensors='pt') st = time.time() output = model(**encoded_input) end = time.time() print(f'Time cost: {end-st} s') print('-'*20, 'Output', '-'*20) print(output)