Update streaming in npu examples (#12495)
* feat: add streaming * Update readme accordingly --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
parent
a9e3f7f14c
commit
ffa9a9e1b3
6 changed files with 69 additions and 41 deletions
|
|
@ -136,6 +136,7 @@ Arguments info:
|
||||||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
|
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
|
||||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
|
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
|
||||||
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
|
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
|
||||||
|
- `--disable-streaming`: Disable streaming mode of generation.
|
||||||
- `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded.
|
- `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded.
|
||||||
|
|
||||||
### Troubleshooting
|
### Troubleshooting
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ import time
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, TextStreamer
|
||||||
|
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
@ -56,6 +56,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||||
|
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||||
parser.add_argument("--save-directory", type=str,
|
parser.add_argument("--save-directory", type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="The path of folder to save converted model, "
|
help="The path of folder to save converted model, "
|
||||||
|
|
@ -94,6 +95,10 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
||||||
|
|
||||||
|
if args.disable_streaming:
|
||||||
|
streamer = None
|
||||||
|
else:
|
||||||
|
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||||
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
"""
|
"""
|
||||||
|
|
@ -105,19 +110,19 @@ if __name__ == "__main__":
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
print("input length:", len(_input_ids[0]))
|
print("input length:", len(_input_ids[0]))
|
||||||
|
print(prompt)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
st = time.time()
|
st = time.time()
|
||||||
output = model.generate(
|
output = model.generate(
|
||||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
|
||||||
)
|
)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print(f"Inference time: {end-st} s")
|
if args.disable_streaming:
|
||||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print(input_str)
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
print(output_str)
|
print(output_str)
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ import time
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, TextStreamer
|
||||||
|
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
@ -56,6 +56,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||||
|
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||||
parser.add_argument("--save-directory", type=str,
|
parser.add_argument("--save-directory", type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="The path of folder to save converted model, "
|
help="The path of folder to save converted model, "
|
||||||
|
|
@ -93,6 +94,10 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
||||||
|
|
||||||
|
if args.disable_streaming:
|
||||||
|
streamer = None
|
||||||
|
else:
|
||||||
|
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||||
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
"""
|
"""
|
||||||
|
|
@ -104,19 +109,19 @@ if __name__ == "__main__":
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
print("input length:", len(_input_ids[0]))
|
print("input length:", len(_input_ids[0]))
|
||||||
|
print(prompt)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
st = time.time()
|
st = time.time()
|
||||||
output = model.generate(
|
output = model.generate(
|
||||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
|
||||||
)
|
)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print(f"Inference time: {end-st} s")
|
if args.disable_streaming:
|
||||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print(input_str)
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
print(output_str)
|
print(output_str)
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ import time
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, TextStreamer
|
||||||
|
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
@ -57,6 +57,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||||
|
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||||
parser.add_argument("--save-directory", type=str,
|
parser.add_argument("--save-directory", type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="The path of folder to save converted model, "
|
help="The path of folder to save converted model, "
|
||||||
|
|
@ -94,6 +95,10 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
||||||
|
|
||||||
|
if args.disable_streaming:
|
||||||
|
streamer = None
|
||||||
|
else:
|
||||||
|
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||||
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
"""
|
"""
|
||||||
|
|
@ -105,19 +110,19 @@ if __name__ == "__main__":
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
print("input length:", len(_input_ids[0]))
|
print("input length:", len(_input_ids[0]))
|
||||||
|
print(prompt)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
st = time.time()
|
st = time.time()
|
||||||
output = model.generate(
|
output = model.generate(
|
||||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
|
||||||
)
|
)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print(f"Inference time: {end-st} s")
|
if args.disable_streaming:
|
||||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print(input_str)
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
print(output_str)
|
print(output_str)
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ import time
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, TextStreamer
|
||||||
|
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
@ -43,6 +43,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||||
|
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||||
parser.add_argument("--save-directory", type=str,
|
parser.add_argument("--save-directory", type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="The path of folder to save converted model, "
|
help="The path of folder to save converted model, "
|
||||||
|
|
@ -80,26 +81,32 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
||||||
|
|
||||||
|
if args.disable_streaming:
|
||||||
|
streamer = None
|
||||||
|
else:
|
||||||
|
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
|
|
||||||
print("finish to load")
|
print("finish to load")
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
_input_ids = tokenizer.encode("<用户>{}<AI>".format(args.prompt), return_tensors="pt")
|
prompt = "<用户>{}<AI>".format(args.prompt)
|
||||||
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
print("input length:", len(_input_ids[0]))
|
print("input length:", len(_input_ids[0]))
|
||||||
|
print(prompt)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
st = time.time()
|
st = time.time()
|
||||||
output = model.generate(
|
output = model.generate(
|
||||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
|
||||||
)
|
)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print(f"Inference time: {end-st} s")
|
if args.disable_streaming:
|
||||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print(input_str)
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
print(output_str)
|
print(output_str)
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ import time
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, TextStreamer
|
||||||
|
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
@ -45,6 +45,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
parser.add_argument("--quantization_group_size", type=int, default=0)
|
||||||
parser.add_argument('--low-bit', type=str, default="sym_int4",
|
parser.add_argument('--low-bit', type=str, default="sym_int4",
|
||||||
help='Load in low bit to use')
|
help='Load in low bit to use')
|
||||||
|
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||||
parser.add_argument("--save-directory", type=str,
|
parser.add_argument("--save-directory", type=str,
|
||||||
required=True,
|
required=True,
|
||||||
|
|
@ -84,6 +85,10 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
||||||
|
|
||||||
|
if args.disable_streaming:
|
||||||
|
streamer = None
|
||||||
|
else:
|
||||||
|
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
|
|
@ -96,19 +101,19 @@ if __name__ == "__main__":
|
||||||
print("finish to load")
|
print("finish to load")
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
_input_ids = tokenizer([text], return_tensors="pt").input_ids
|
_input_ids = tokenizer([text], return_tensors="pt").input_ids
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
print("input length:", len(_input_ids[0]))
|
print("input length:", len(_input_ids[0]))
|
||||||
|
print(text)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
st = time.time()
|
st = time.time()
|
||||||
output = model.generate(
|
output = model.generate(
|
||||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
|
||||||
)
|
)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print(f"Inference time: {end-st} s")
|
if args.disable_streaming:
|
||||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print(input_str)
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
print(output_str)
|
print(output_str)
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
|
||||||
print("-" * 80)
|
print("-" * 80)
|
||||||
print("done")
|
print("done")
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue