Update streaming in npu examples (#12495)
* feat: add streaming * Update readme accordingly --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
		
							parent
							
								
									a9e3f7f14c
								
							
						
					
					
						commit
						ffa9a9e1b3
					
				
					 6 changed files with 69 additions and 41 deletions
				
			
		| 
						 | 
				
			
			@ -136,6 +136,7 @@ Arguments info:
 | 
			
		|||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
 | 
			
		||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
 | 
			
		||||
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
 | 
			
		||||
- `--disable-streaming`: Disable streaming mode of generation.
 | 
			
		||||
- `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded.
 | 
			
		||||
 | 
			
		||||
### Troubleshooting
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,7 +20,7 @@ import time
 | 
			
		|||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -56,6 +56,7 @@ if __name__ == "__main__":
 | 
			
		|||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
| 
						 | 
				
			
			@ -94,6 +95,10 @@ if __name__ == "__main__":
 | 
			
		|||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			@ -105,19 +110,19 @@ if __name__ == "__main__":
 | 
			
		|||
        for i in range(5):
 | 
			
		||||
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,7 +20,7 @@ import time
 | 
			
		|||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -56,6 +56,7 @@ if __name__ == "__main__":
 | 
			
		|||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
| 
						 | 
				
			
			@ -93,6 +94,10 @@ if __name__ == "__main__":
 | 
			
		|||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			@ -104,19 +109,19 @@ if __name__ == "__main__":
 | 
			
		|||
        for i in range(5):
 | 
			
		||||
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,7 +20,7 @@ import time
 | 
			
		|||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -57,6 +57,7 @@ if __name__ == "__main__":
 | 
			
		|||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
| 
						 | 
				
			
			@ -94,6 +95,10 @@ if __name__ == "__main__":
 | 
			
		|||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			@ -105,19 +110,19 @@ if __name__ == "__main__":
 | 
			
		|||
        for i in range(5):
 | 
			
		||||
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,7 +20,7 @@ import time
 | 
			
		|||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -43,6 +43,7 @@ if __name__ == "__main__":
 | 
			
		|||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
| 
						 | 
				
			
			@ -80,26 +81,32 @@ if __name__ == "__main__":
 | 
			
		|||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(5):
 | 
			
		||||
            _input_ids = tokenizer.encode("<用户>{}<AI>".format(args.prompt), return_tensors="pt")
 | 
			
		||||
            prompt = "<用户>{}<AI>".format(args.prompt)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,7 +20,7 @@ import time
 | 
			
		|||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -45,6 +45,7 @@ if __name__ == "__main__":
 | 
			
		|||
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
			
		||||
    parser.add_argument('--low-bit', type=str, default="sym_int4",
 | 
			
		||||
                        help='Load in low bit to use')
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
| 
						 | 
				
			
			@ -84,6 +85,10 @@ if __name__ == "__main__":
 | 
			
		|||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
| 
						 | 
				
			
			@ -96,19 +101,19 @@ if __name__ == "__main__":
 | 
			
		|||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            _input_ids = tokenizer([text], return_tensors="pt").input_ids
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(text)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue