add phi-2 optimization (#10843)

This commit is contained in:
Yishuo Wang 2024-04-22 18:56:47 +08:00 committed by GitHub
parent 47bd5f504c
commit fe5a082b84
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 203 additions and 1 deletions

View file

@ -650,6 +650,9 @@ def _optimize_pre(model):
if model.config.model_type == "starcoder2":
from ipex_llm.transformers.models.starcoder2 import merge_qkv
model.apply(merge_qkv)
if model.config.model_type == "phi":
from ipex_llm.transformers.models.phi import merge_qkv
model.apply(merge_qkv)
if model.config.model_type == "qwen":
rope_base = model.config.rotary_emb_base
from accelerate.big_modeling import init_empty_weights
@ -1415,7 +1418,14 @@ def _optimize_post(model, lightweight_bmm=False):
from ipex_llm.transformers.models.starcoder2 import model_forward
convert_forward(model, module.Starcoder2Attention, attention_forward)
convert_forward(model, module.Starcoder2Model, model_forward)
elif model.config.model_type == 'phi':
# for phi-2
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.phi import attention_forward
from ipex_llm.transformers.models.phi import model_forward
convert_forward(model, module.PhiAttention, attention_forward)
convert_forward(model, module.PhiModel, model_forward)
elif model.config.model_type == 'yuan':
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)

View file

@ -0,0 +1,192 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/phi/modeling_phi.py
# which is licensed under Apache License 2.0:
#
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
from ipex_llm.transformers.kv import DynamicNormalCache
from ipex_llm.utils.common.log4Error import invalidInputError
from typing import Optional, Tuple, List
from transformers.cache_utils import Cache
from transformers.models.phi.modeling_phi import repeat_kv, apply_rotary_pos_emb
from transformers.models.phi.modeling_phi import PhiModel
def should_use_fuse_rope(self, hidden_states, position_ids):
use_fuse_rope = (
hidden_states.device.type == "xpu" and
hidden_states.numel() == hidden_states.size(-1) and
not (self.training and hidden_states.requires_grad) and
position_ids is not None
)
return use_fuse_rope
def merge_qkv(module: torch.nn.Module):
if module.__class__.__name__ == "PhiAttention":
new_weight = torch.cat([
module.q_proj.weight.data,
module.k_proj.weight.data,
module.v_proj.weight.data,
], dim=0)
new_bias = torch.cat([
module.q_proj.bias.data,
module.k_proj.bias.data,
module.v_proj.bias.data,
], dim=-1)
qkv_proj = torch.nn.Linear(0, 0, bias=True)
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
qkv_proj.in_features = new_weight.size(1)
qkv_proj.out_features = new_weight.size(0)
module.qkv_proj = qkv_proj
del module.q_proj, module.k_proj, module.v_proj
def attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
invalidInputError(not self.qk_layernorm, "`qk_layernorm` must be false")
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_emb.dim],
query_states[..., self.rotary_emb.dim:],
)
key_rot, key_pass = (
key_states[..., : self.rotary_emb.dim],
key_states[..., self.rotary_emb.dim:],
)
# IPEX-LLM OPT: fuse rope
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
if use_fuse_rope:
query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot, key_rot, sin,
cos, "stablelm", position_ids)
else:
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
invalidInputError(past_key_value is not None,
"`past_key_value` cannot be None")
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None, new_layout=True)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
attn_weights = torch.matmul(
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.dense(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
# IPEX-LLM OPT: kv cache but no sdp (its head_dim 80, cannot use sdp)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if use_cache:
if not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
return PhiModel.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)