diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index d48bc28b..e377c874 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -632,6 +632,10 @@ def _optimize_pre(model): module.rope_base = rope_base del module.c_attn model.apply(split_qkv_proj_func) + if model.config.model_type == "stablelm": + from ipex_llm.transformers.models.stablelm import merge_qkv + model.apply(merge_qkv) + return model @@ -1336,5 +1340,16 @@ def _optimize_post(model, lightweight_bmm=False): convert_forward(model, module.BertEncoder, encoder_forward) + elif model.config.model_type == 'stablelm': + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from ipex_llm.transformers.models.stablelm import stablelm_attention_forward + convert_forward(model, + module.StableLmAttention, + stablelm_attention_forward + ) + convert_forward(model, + module.StableLmMLP, + llama_mlp_forward) return model diff --git a/python/llm/src/ipex_llm/transformers/models/stablelm.py b/python/llm/src/ipex_llm/transformers/models/stablelm.py new file mode 100644 index 00000000..b311c740 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/models/stablelm.py @@ -0,0 +1,244 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/v4.38.0/src/transformers/models/stablelm/modeling_stablelm.py +# which is licensed under Apache License 2.0: +# +# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import math +from typing import Optional, Tuple + +import torch +from torch import nn +import torch.nn.functional as F +from transformers.models.stablelm.modeling_stablelm import StableLmAttention + +from ipex_llm.utils.common import invalidInputError +from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache +from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \ + apply_rotary_pos_emb_no_cache_xpu +from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36 +from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp +from ipex_llm.transformers.models.mistral import should_use_fuse_rope, repeat_kv +try: + from transformers.cache_utils import Cache +except ImportError: + Cache = Tuple[torch.Tensor] + + +KV_CACHE_ALLOC_BLOCK_LENGTH = 256 + + +def merge_qkv(module: torch.nn.Module): + if isinstance(module, StableLmAttention): + new_weight = torch.cat([ + module.q_proj.weight.data, + module.k_proj.weight.data, + module.v_proj.weight.data, + ], dim=0) + + qkv_proj = torch.nn.Linear(0, 0, bias=False) + qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False) + qkv_proj.in_features = new_weight.size(1) + qkv_proj.out_features = new_weight.size(0) + module.qkv_proj = qkv_proj + + del module.q_proj, module.k_proj, module.v_proj + + +def stablelm_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor]=None, + position_ids: Optional[torch.LongTensor]=None, + past_key_value: Optional[Cache]=None, + output_attentions: bool=False, + use_cache: bool=False, + **kwargs +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: + + bsz, q_len, _ = hidden_states.size() + device = hidden_states.device + # for flash attention + original_dtype = hidden_states.dtype + + use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) + enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) + + qkv = self.qkv_proj(hidden_states) + qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) + qkv = qkv.transpose(1, 2) + query_states, key_states, value_states = qkv.split([self.num_heads, + self.num_heads, + self.num_heads], dim=1) + + kv_seq_len = key_states.shape[-2] + + if past_key_value is not None: + if self.layer_idx is None: + invalidInputError(False, + "The cache structure has changed since version v4.36. " + f"If you are using {self.__class__.__name__} for " + "auto-regressive decodingwith k/v caching, please make sure " + "to initialize the attention class with a layer index.") + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + # Partial rotary embedding + query_rot, query_pass = ( + query_states[..., : self.rotary_emb.dim], + query_states[..., self.rotary_emb.dim:], + ) + key_rot, key_pass = ( + key_states[..., : self.rotary_emb.dim], + key_states[..., self.rotary_emb.dim:], + ) + if use_fuse_rope: + query_rot, key_rot = apply_rotary_pos_emb_no_cache_xpu(query_rot, + key_rot, + position_ids, + "stablelm") + else: + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] + query_rot, key_rot = apply_rotary_pos_emb(query_rot, + key_rot, + cos, + sin, + position_ids, + "stablelm") + + # [batch_size, seq_length, num_heads, head_dim] + query_states = torch.cat((query_rot, query_pass), dim=-1) + key_states = torch.cat((key_rot, key_pass), dim=-1) + + if past_key_value is not None: + # update the number of seen tokens + if self.layer_idx == 0: + past_key_value.seen_tokens += key_states.shape[-2] + + # reuse k, v, self_attention + # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx` + if len(past_key_value.key_cache) <= self.layer_idx: + past_key_value.key_cache.append(key_states) + past_key_value.value_cache.append(value_states) + else: + cache_k = past_key_value.key_cache[self.layer_idx] + cache_v = past_key_value.value_cache[self.layer_idx] + + if not enough_kv_room: + # allocate new + new_c_k, new_c_v = extend_kv_cache(bsz, + self.num_key_value_heads, # Support GQA + self.head_dim, + cache_k.size(2), + kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, + dtype=cache_k.dtype, + device=device) + + new_c_k[:] = cache_k + new_c_v[:] = cache_v + cache_k = new_c_k + cache_v = new_c_v + + key_states, value_states = append_kv_cache(cache_k, cache_v, + key_states, value_states) + + # update past_key_value + past_key_value.key_cache[self.layer_idx] = key_states + past_key_value.value_cache[self.layer_idx] = value_states + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if not self.training and not hidden_states.requires_grad and \ + use_flash_attention(query_states, key_states, attention_mask): + attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16), + key_states.to(device, dtype=torch.float16), + value_states.to(device, dtype=torch.float16), + is_causal=True) + attn_weights = None + elif not self.training and not hidden_states.requires_grad and \ + use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states, attention_mask): + import linear_fp16_esimd + attn_output = linear_fp16_esimd.sdp_forward(query_states, + key_states, + value_states) + attn_output = attn_output.view(query_states.shape) + attn_weights = None + else: + attn_weights = torch.matmul( + query_states, + key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + invalidInputError( + False, + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}," + f" but is {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + invalidInputError( + False, + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}," + f" but is {attention_mask.size()}" + ) + + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = \ + nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype) + attn_weights = self.attention_dropout(attn_weights) + + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + invalidInputError( + False, + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}," + f" but is {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output.to(original_dtype), attn_weights, past_key_value diff --git a/python/llm/src/ipex_llm/transformers/models/utils.py b/python/llm/src/ipex_llm/transformers/models/utils.py index 2241a9bc..3fa48489 100644 --- a/python/llm/src/ipex_llm/transformers/models/utils.py +++ b/python/llm/src/ipex_llm/transformers/models/utils.py @@ -168,7 +168,7 @@ def rotate_every_two(x): def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family): if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral", - "mixtral", "qwen2", "yuan"]: + "mixtral", "qwen2", "yuan", "stablelm"]: # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] @@ -207,7 +207,7 @@ def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family, rope_the q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device) k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device) if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral", - "mixtral"]: + "mixtral", "stablelm"]: linear_q4_0.apply_rotary_embedding_half_q_and_k(q, k, position_ids, q_embed, k_embed, rope_theta) return q_embed, k_embed