LLM: add llama2-13b native int4 example (#8613)

This commit is contained in:
binbin Deng 2023-07-26 10:12:52 +08:00 committed by GitHub
parent a98b3fe961
commit fcf8c085e3
2 changed files with 35 additions and 4 deletions

View file

@ -2,7 +2,7 @@
In this example, we show a pipeline to convert a large language model to BigDL-LLM native INT4 format, and then run inference on the converted INT4 model.
> **Note**: BigDL-LLM native INT4 format currently supports model family **LLaMA** (such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.), **GPT-NeoX** (such as RedPajama), **BLOOM** (such as Phoenix) and **StarCoder**.
> **Note**: BigDL-LLM native INT4 format currently supports model family **LLaMA** (such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.), **LLaMA 2** (such as Llama-2-13B), **GPT-NeoX** (such as RedPajama), **BLOOM** (such as Phoenix) and **StarCoder**.
## Prepare Environment
We suggest using conda to manage environment:
@ -19,7 +19,7 @@ python ./native_int4_pipeline.py --thread-num THREAD_NUM --model-family MODEL_FA
```
arguments info:
- `--thread-num THREAD_NUM`: **required** argument defining the number of threads to use for inference. It is default to be `2`.
- `--model-family MODEL_FAMILY`: **required** argument defining the model family of the large language model (supported option: `'llama'`, `'gptneox'`, `'bloom'`, `'starcoder'`). It is default to be `'llama'`.
- `--model-family MODEL_FAMILY`: **required** argument defining the model family of the large language model (supported option: `'llama'`, `'llama2'`, `'gptneox'`, `'bloom'`, `'starcoder'`). It is default to be `'llama'`.
- `--repo-id-or-model-path MODEL_PATH`: **required** argument defining the path to the huggingface checkpoint folder for the model.
> **Note** `MODEL_PATH` should fits your inputed `MODEL_FAMILY`.
@ -51,6 +51,33 @@ Output:
{'id': 'cmpl-c87e5562-281a-4837-8665-7b122948e0e8', 'object': 'text_completion', 'created': 1688368515, 'model': './bigdl_llm_llama_q4_0.bin', 'choices': [{'text': ' CPU stands for Central Processing Unit. This means that the processors in your computer are what make it run, so if you have a Pentium 4', 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 9, 'completion_tokens': 32, 'total_tokens': 41}}
```
### Model family LLaMA 2
```log
-------------------- bigdl-llm based tokenizer --------------------
Inference time: xxxx s
Output:
[' The CPU (Central Processing Unit) is the brain of your computer. It is responsible for executing most instructions that your computer receives from the operating system and']
-------------------- HuggingFace transformers tokenizer --------------------
Please note that the loading of HuggingFace transformers tokenizer may take some time.
You are using the legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565
Llama.generate: prefix-match hit
Inference time: xxxx s
Output:
['Central Processing Unit (CPU) is the brain of any computer system. It performs all the calculations and executes all the instructions that are given to it by']
-------------------- fast forward --------------------
Llama.generate: prefix-match hit
bigdl-llm timings: load time = xxxx ms
bigdl-llm timings: sample time = xxxx ms / 32 runs ( xxxx ms per token)
bigdl-llm timings: prompt eval time = xxxx ms / 1 tokens ( xxxx ms per token)
bigdl-llm timings: eval time = xxxx ms / 32 runs ( xxxx ms per token)
bigdl-llm timings: total time = xxxx ms
Inference time (fast forward): xxxx s
Output:
{'id': 'cmpl-680b5482-2ce8-4a04-a799-41845aa76939', 'object': 'text_completion', 'created': 1690275575, 'model': './bigdl_llm_llama_q4_0.bin', 'choices': [{'text': ' CPU stands for Central Processing Unit. It is the brain of any computer, responsible for executing most instructions that make up a computer program. The CPU retrieves', 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 9, 'completion_tokens': 32, 'total_tokens': 41}}
```
### Model family GPT-NeoX
```log
-------------------- bigdl-llm based tokenizer --------------------

View file

@ -95,8 +95,8 @@ def main():
parser.add_argument('--thread-num', type=int, default=2, required=True,
help='Number of threads to use for inference')
parser.add_argument('--model-family', type=str, default='llama', required=True,
choices=["llama", "bloom", "gptneox", "starcoder"],
help="The model family of the large language model (supported option: 'llama', "
choices=["llama", "llama2", "bloom", "gptneox", "starcoder"],
help="The model family of the large language model (supported option: 'llama', 'llama2', "
"'gptneox', 'bloom', 'starcoder')")
parser.add_argument('--repo-id-or-model-path', type=str, required=True,
help='The path to the huggingface checkpoint folder')
@ -108,6 +108,10 @@ def main():
repo_id_or_model_path = args.repo_id_or_model_path
# Currently, we can directly use llama related implementation to run llama2 models
if args.model_family == 'llama2':
args.model_family = 'llama'
# Step 1: convert original model to BigDL llm model
bigdl_llm_path = convert(repo_id_or_model_path=repo_id_or_model_path,
model_family=args.model_family,