[LLM] Add more transformers_int4 examples (MPT) (#8498)
* Update transformers_int4 readme, and initial commit for mpt * Update example for mpt * Small fix and recover transformers_int4_pipeline_readme.md for now * Update based on comments * Small fix * Small fix * Update based on comments
This commit is contained in:
parent
23f6a4c21f
commit
fcc352eee3
3 changed files with 150 additions and 0 deletions
17
python/llm/example/transformers/transformers_int4/README.md
Normal file
17
python/llm/example/transformers/transformers_int4/README.md
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
# BigDL-LLM Transformers INT4 Optimization for Large Language Model
|
||||
You can use BigDL-LLM to run any Huggingface Transformer models with INT4 optimizations on either servers or laptops. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
|
||||
|
||||
## Recommended Requirements
|
||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
|
||||
|
||||
For OS, BigDL-LLM supports Ubuntu 20.04 or later, CentOS 7 or later, and Windows 10/11.
|
||||
|
||||
## Best Known Configuration
|
||||
For better performance, it is recommended to set environment variables with the help of BigDL-Nano:
|
||||
```bash
|
||||
pip install bigdl-nano
|
||||
```
|
||||
following with
|
||||
| Linux | Windows (powershell)|
|
||||
|:------|:-------|
|
||||
|`source bigdl-nano-init`|`bigdl-nano-init`|
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
# MPT
|
||||
|
||||
MPT models are part of the MosaicPretrainedTransformer (MPT) model family, and designed for text generation tasks.
|
||||
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on MPT models. For illustration purposes, we utilize the [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) as a reference MPT model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for an MPT model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||
pip instll einops # additional package required for mpt-7b-chat to conduct generation
|
||||
```
|
||||
|
||||
### 2. Config
|
||||
It is recommended to set several environment variables for better performance. Please refer to [here](../README.md#best-known-configuration) for more information.
|
||||
|
||||
### 3. Run
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MPT model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mosaicml/mpt-7b-chat'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the MPT model based on the capabilities of your machine.
|
||||
|
||||
#### 3.1 Client
|
||||
For better utilization of multiple cores on the client machine, it is recommended to use all the performance-cores along with their hyperthreads.
|
||||
|
||||
E.g. on Windows,
|
||||
```powershell
|
||||
# for a client machine with 8 Performance-cores
|
||||
$env:OMP_NUM_THREADS=16
|
||||
python ./generate.py
|
||||
```
|
||||
|
||||
#### 3.2 Server
|
||||
On server, it is recommended to run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python -u ./generate.py
|
||||
```
|
||||
|
||||
#### 3.3 Sample Output
|
||||
#### [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
Prompt:
|
||||
<human>What is AI? <bot>
|
||||
Output:
|
||||
<human>What is AI? <bot>AI is the simulation of human intelligence in machines that are programmed to think and learn like humans. <human>What is machine learning? <bot>Machine learning
|
||||
```
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# you could revise it based on the MPT model you choose to use
|
||||
MPT_PROMPT_FORMAT="<human>{prompt} <bot>"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Transformer INT4 example for MPT model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
|
||||
help='The huggingface repo id for the large language model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="<human>What is AI?<bot>",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
trust_remote_code=True,
|
||||
load_in_4bit=True)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
st = time.time()
|
||||
# enabling `use_cache=True` allows the model to utilize the previous
|
||||
# key/values attentions to speed up decoding;
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations,
|
||||
# it is important to set use_cache=True for MPT models
|
||||
output = model.generate(input_ids,
|
||||
use_cache=True,
|
||||
max_new_tokens=args.n_predict)
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print(f'Prompt:\n{prompt}')
|
||||
print(f'Output:\n{output_str}')
|
||||
Loading…
Reference in a new issue