[NPU] support asym_int4 for llama (#12556)
* add llama-imatrix * fix bugs in llama.py * style fix
This commit is contained in:
parent
d127a8654c
commit
fcb474820d
2 changed files with 124 additions and 32 deletions
|
|
@ -72,6 +72,7 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
group_size: int = 0,
|
group_size: int = 0,
|
||||||
cos_len: int = 1,
|
cos_len: int = 1,
|
||||||
keep_position_ids=True,
|
keep_position_ids=True,
|
||||||
|
asym: bool = False,
|
||||||
):
|
):
|
||||||
super().__init__(max_seq_len=max_seq_len,
|
super().__init__(max_seq_len=max_seq_len,
|
||||||
transpose_value=transpose_value,
|
transpose_value=transpose_value,
|
||||||
|
|
@ -80,7 +81,8 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
||||||
device=device,
|
device=device,
|
||||||
n_splits_linear=n_splits_linear,
|
n_splits_linear=n_splits_linear,
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size)
|
group_size=group_size,
|
||||||
|
asym=asym)
|
||||||
self.max_seq_len = max_seq_len
|
self.max_seq_len = max_seq_len
|
||||||
self.intermediate_size = intermediate_size
|
self.intermediate_size = intermediate_size
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
|
|
@ -278,7 +280,8 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
do_print: bool = False,
|
do_print: bool = False,
|
||||||
n_splits_linear: int = 1,
|
n_splits_linear: int = 1,
|
||||||
n_splits_down_proj: int = 1,
|
n_splits_down_proj: int = 1,
|
||||||
group_size: int = 0
|
group_size: int = 0,
|
||||||
|
asym: bool = False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
|
@ -286,8 +289,10 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
|
|
||||||
op_parameters = []
|
op_parameters = []
|
||||||
for w in parameters:
|
for w in parameters:
|
||||||
if isinstance(w, tuple): # from QuantizedLinear
|
if isinstance(w, tuple) and not asym: # from QuantizedLinear
|
||||||
op_parameters.append((w[0].numpy(), w[1].numpy()))
|
op_parameters.append((w[0].numpy(), w[1].numpy()))
|
||||||
|
elif isinstance(w, tuple) and asym: # from QuantizedLinear
|
||||||
|
op_parameters.append((w[0].numpy(), w[1].numpy(), w[2].numpy()))
|
||||||
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
|
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
|
||||||
op_parameters.append(w.numpy())
|
op_parameters.append(w.numpy())
|
||||||
elif isinstance(w, np.ndarray): # scale
|
elif isinstance(w, np.ndarray): # scale
|
||||||
|
|
@ -341,7 +346,8 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
dtype=np_dtype,
|
dtype=np_dtype,
|
||||||
n_splits_linear=n_splits_linear,
|
n_splits_linear=n_splits_linear,
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size
|
group_size=group_size,
|
||||||
|
asym=asym,
|
||||||
)
|
)
|
||||||
self.backend_decoders.append(decoder)
|
self.backend_decoders.append(decoder)
|
||||||
|
|
||||||
|
|
@ -427,6 +433,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
||||||
n_splits_down_proj: int = 1,
|
n_splits_down_proj: int = 1,
|
||||||
group_size: int = 0,
|
group_size: int = 0,
|
||||||
cos_len: int = 1,
|
cos_len: int = 1,
|
||||||
|
asym: bool = False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.op_parameters = parameters
|
self.op_parameters = parameters
|
||||||
|
|
@ -460,6 +467,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size,
|
group_size=group_size,
|
||||||
cos_len=cos_len,
|
cos_len=cos_len,
|
||||||
|
asym=asym,
|
||||||
)
|
)
|
||||||
self.layer_norm_0 = layer_norm_0
|
self.layer_norm_0 = layer_norm_0
|
||||||
self.layer_norm_1 = layer_norm_1
|
self.layer_norm_1 = layer_norm_1
|
||||||
|
|
@ -555,6 +563,7 @@ def run_decode(
|
||||||
layer_indexs = range(layer_start, layer_end)
|
layer_indexs = range(layer_start, layer_end)
|
||||||
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
||||||
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
||||||
|
asym = getattr(model.config, "asym", False)
|
||||||
for layer_idx in layer_indexs:
|
for layer_idx in layer_indexs:
|
||||||
curr_layer = model.model.layers[layer_idx]
|
curr_layer = model.model.layers[layer_idx]
|
||||||
attn_layer = curr_layer.self_attn
|
attn_layer = curr_layer.self_attn
|
||||||
|
|
@ -567,10 +576,17 @@ def run_decode(
|
||||||
mlp_layer.down_proj_dq_list]:
|
mlp_layer.down_proj_dq_list]:
|
||||||
l_weights = []
|
l_weights = []
|
||||||
scales = []
|
scales = []
|
||||||
|
zeros = []
|
||||||
for l in layer_list:
|
for l in layer_list:
|
||||||
l_weights.append(l.weight)
|
l_weights.append(l.weight)
|
||||||
scales.append(l.scale)
|
scales.append(l.scale)
|
||||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
if l.zero is not None:
|
||||||
|
zeros.append(l.zero)
|
||||||
|
if len(zeros):
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
|
||||||
|
torch.stack(zeros, axis=0)))
|
||||||
|
else:
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||||
|
|
||||||
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
||||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||||
|
|
@ -603,7 +619,8 @@ def run_decode(
|
||||||
do_print=False,
|
do_print=False,
|
||||||
n_splits_linear=n_splits_linear,
|
n_splits_linear=n_splits_linear,
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size
|
group_size=group_size,
|
||||||
|
asym=asym,
|
||||||
)
|
)
|
||||||
|
|
||||||
dist.barrier()
|
dist.barrier()
|
||||||
|
|
@ -814,6 +831,7 @@ def run_prefill(
|
||||||
layer_indexs = range(layer_start, layer_end)
|
layer_indexs = range(layer_start, layer_end)
|
||||||
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
||||||
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
||||||
|
asym = getattr(model.config, "asym", False)
|
||||||
for layer_idx in layer_indexs:
|
for layer_idx in layer_indexs:
|
||||||
curr_layer = model.model.layers[layer_idx]
|
curr_layer = model.model.layers[layer_idx]
|
||||||
attn_layer = curr_layer.self_attn
|
attn_layer = curr_layer.self_attn
|
||||||
|
|
@ -827,10 +845,18 @@ def run_prefill(
|
||||||
mlp_layer.down_proj_dq_list]:
|
mlp_layer.down_proj_dq_list]:
|
||||||
l_weights = []
|
l_weights = []
|
||||||
scales = []
|
scales = []
|
||||||
|
zeros = []
|
||||||
for l in layer_list:
|
for l in layer_list:
|
||||||
l_weights.append(l.weight)
|
l_weights.append(l.weight)
|
||||||
scales.append(l.scale)
|
scales.append(l.scale)
|
||||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
if l.zero is not None:
|
||||||
|
zeros.append(l.zero)
|
||||||
|
if len(zeros):
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
|
||||||
|
torch.stack(zeros, axis=0)))
|
||||||
|
else:
|
||||||
|
weights.append((torch.stack(l_weights, axis=0),
|
||||||
|
torch.stack(scales, axis=0)))
|
||||||
|
|
||||||
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
||||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||||
|
|
@ -859,6 +885,7 @@ def run_prefill(
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size,
|
group_size=group_size,
|
||||||
cos_len=cos_len,
|
cos_len=cos_len,
|
||||||
|
asym=asym,
|
||||||
)
|
)
|
||||||
|
|
||||||
layer_weights.extend(weights)
|
layer_weights.extend(weights)
|
||||||
|
|
|
||||||
|
|
@ -130,17 +130,31 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
||||||
vocab_size = model.config.vocab_size
|
vocab_size = model.config.vocab_size
|
||||||
model_norm = model.model.norm
|
model_norm = model.model.norm
|
||||||
lm_head = model.lm_head
|
lm_head = model.lm_head
|
||||||
|
asym = getattr(model.config, "asym", False)
|
||||||
if n_splits_linear == 1:
|
if n_splits_linear == 1:
|
||||||
weights = [(lm_head.weight, lm_head.scale)]
|
asym = lm_head.qtype == "asym_int4_rtn"
|
||||||
|
if asym:
|
||||||
|
weights = [(lm_head.weight, lm_head.scale, lm_head.zero)]
|
||||||
|
else:
|
||||||
|
weights = [(lm_head.weight, lm_head.scale)]
|
||||||
else:
|
else:
|
||||||
lm_heads = lm_head.lm_heads
|
lm_heads = lm_head.lm_heads
|
||||||
|
asym = lm_heads[0].qtype == "asym_int4_rtn"
|
||||||
lm_head_weights = []
|
lm_head_weights = []
|
||||||
scales = []
|
scales = []
|
||||||
for i in range(n_splits_linear):
|
zeros = []
|
||||||
lm_head_weights.append(lm_heads[i].weight)
|
for l in lm_heads:
|
||||||
scales.append(lm_heads[i].scale)
|
lm_head_weights.append(l.weight)
|
||||||
weights = [(torch.stack(lm_head_weights, axis=0),
|
scales.append(l.scale)
|
||||||
torch.stack(scales, axis=0))]
|
if l.zero is not None:
|
||||||
|
zeros.append(l.zero)
|
||||||
|
if len(zeros):
|
||||||
|
weights = [(torch.stack(lm_head_weights, axis=0),
|
||||||
|
torch.stack(scales, axis=0),
|
||||||
|
torch.stack(zeros, axis=0))]
|
||||||
|
else:
|
||||||
|
weights = [(torch.stack(lm_head_weights, axis=0),
|
||||||
|
torch.stack(scales, axis=0))]
|
||||||
if isinstance(weights[0], tuple):
|
if isinstance(weights[0], tuple):
|
||||||
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
||||||
else: # FP16 Linear
|
else: # FP16 Linear
|
||||||
|
|
@ -156,16 +170,23 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
||||||
dtype=np_dtype,
|
dtype=np_dtype,
|
||||||
model_norm_weight=model_norm.weight.to(torch.float16),
|
model_norm_weight=model_norm.weight.to(torch.float16),
|
||||||
vocab_size=vocab_size,
|
vocab_size=vocab_size,
|
||||||
n_splits=n_splits_linear
|
n_splits=n_splits_linear,
|
||||||
|
asym=asym
|
||||||
)
|
)
|
||||||
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir,
|
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir,
|
||||||
True, False)
|
True, False)
|
||||||
|
|
||||||
# save weights bins files
|
# save weights bins files
|
||||||
if n_splits_linear == 1:
|
if n_splits_linear == 1:
|
||||||
weight_numpy = [
|
if not asym:
|
||||||
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
|
weight_numpy = [
|
||||||
]
|
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
weight_numpy = [
|
||||||
|
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
|
||||||
|
lm_head.zero.data.numpy()
|
||||||
|
]
|
||||||
else:
|
else:
|
||||||
weight_numpy = [v.numpy() for v in weights[0]]
|
weight_numpy = [v.numpy() for v in weights[0]]
|
||||||
|
|
||||||
|
|
@ -234,6 +255,7 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||||
head_dim = model.model.layers[0].self_attn.head_dim
|
head_dim = model.model.layers[0].self_attn.head_dim
|
||||||
intermediate_size = model.config.intermediate_size
|
intermediate_size = model.config.intermediate_size
|
||||||
rms_norm_eps = model.config.rms_norm_eps
|
rms_norm_eps = model.config.rms_norm_eps
|
||||||
|
asym = getattr(model.config, "asym", False)
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_models.llama_mp import LowBitLlamaMultiDecoderlayer
|
from ipex_llm.transformers.npu_models.llama_mp import LowBitLlamaMultiDecoderlayer
|
||||||
curr_layer = model.model.layers[layer_idx]
|
curr_layer = model.model.layers[layer_idx]
|
||||||
|
|
@ -247,10 +269,17 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||||
mlp_layer.down_proj_dq_list]:
|
mlp_layer.down_proj_dq_list]:
|
||||||
l_weights = []
|
l_weights = []
|
||||||
scales = []
|
scales = []
|
||||||
|
zeros = []
|
||||||
for l in layer_list:
|
for l in layer_list:
|
||||||
l_weights.append(l.weight)
|
l_weights.append(l.weight)
|
||||||
scales.append(l.scale)
|
scales.append(l.scale)
|
||||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
if l.zero is not None:
|
||||||
|
zeros.append(l.zero)
|
||||||
|
if len(zeros):
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
|
||||||
|
torch.stack(zeros, axis=0)))
|
||||||
|
else:
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||||
|
|
||||||
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
||||||
# llama-2-7B & llama-3-8B
|
# llama-2-7B & llama-3-8B
|
||||||
|
|
@ -299,7 +328,8 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size,
|
group_size=group_size,
|
||||||
cos_len=input_len,
|
cos_len=input_len,
|
||||||
keep_position_ids=keep_position_ids
|
keep_position_ids=keep_position_ids,
|
||||||
|
asym=asym
|
||||||
)
|
)
|
||||||
|
|
||||||
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
|
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
|
||||||
|
|
@ -329,11 +359,24 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||||
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
|
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
|
||||||
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
||||||
st_idx = 8
|
st_idx = 8
|
||||||
for idx, (weight, scale) in enumerate(weights):
|
if not asym:
|
||||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
for idx, (weight, scale) in enumerate(weights):
|
||||||
weight.numpy().tofile(bin_file)
|
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
||||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
weight.numpy().tofile(bin_file)
|
||||||
scale.numpy().tofile(bin_file)
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
||||||
|
scale.numpy().tofile(bin_file)
|
||||||
|
else:
|
||||||
|
for idx, (weight, scale, zero) in enumerate(weights):
|
||||||
|
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*3}.bin")
|
||||||
|
weight.numpy().tofile(bin_file)
|
||||||
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*3+1}.bin")
|
||||||
|
scale.numpy().tofile(bin_file)
|
||||||
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*3+2}.bin")
|
||||||
|
zero.numpy().tofile(bin_file)
|
||||||
|
|
||||||
del single_decoder
|
del single_decoder
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -347,6 +390,7 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
|
||||||
rms_norm_eps = model.config.rms_norm_eps
|
rms_norm_eps = model.config.rms_norm_eps
|
||||||
layer_num = len(model.model.layers)
|
layer_num = len(model.model.layers)
|
||||||
fused_layer_num = layer_num // fused_layers
|
fused_layer_num = layer_num // fused_layers
|
||||||
|
asym = getattr(model.config, "asym", False)
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_models.llama_mp import LowBitLlamaMultiDecoderlayer
|
from ipex_llm.transformers.npu_models.llama_mp import LowBitLlamaMultiDecoderlayer
|
||||||
for i in range(fused_layers):
|
for i in range(fused_layers):
|
||||||
|
|
@ -370,10 +414,17 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
|
||||||
mlp_layer.down_proj_dq_list]:
|
mlp_layer.down_proj_dq_list]:
|
||||||
l_weights = []
|
l_weights = []
|
||||||
scales = []
|
scales = []
|
||||||
|
zeros = []
|
||||||
for l in layer_list:
|
for l in layer_list:
|
||||||
l_weights.append(l.weight)
|
l_weights.append(l.weight)
|
||||||
scales.append(l.scale)
|
scales.append(l.scale)
|
||||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
if l.zero is not None:
|
||||||
|
zeros.append(l.zero)
|
||||||
|
if len(zeros):
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
|
||||||
|
torch.stack(zeros, axis=0)))
|
||||||
|
else:
|
||||||
|
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||||
|
|
||||||
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
|
||||||
# llama-2-7B & llama-3-8B
|
# llama-2-7B & llama-3-8B
|
||||||
|
|
@ -397,12 +448,25 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
|
||||||
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
||||||
st_idx = 5
|
st_idx = 5
|
||||||
# 6, 7 are past k/v
|
# 6, 7 are past k/v
|
||||||
for idx, (weight, scale) in enumerate(weights):
|
if not asym:
|
||||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
for idx, (weight, scale) in enumerate(weights):
|
||||||
weight.numpy().tofile(bin_file)
|
bin_file = os.path.join(weight_dir,
|
||||||
bin_file = os.path.join(weight_dir,
|
f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
||||||
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
weight.numpy().tofile(bin_file)
|
||||||
scale.numpy().tofile(bin_file)
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
||||||
|
scale.numpy().tofile(bin_file)
|
||||||
|
else:
|
||||||
|
for idx, (weight, scale, zero) in enumerate(weights):
|
||||||
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*3}.bin")
|
||||||
|
weight.numpy().tofile(bin_file)
|
||||||
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*3+1}.bin")
|
||||||
|
scale.numpy().tofile(bin_file)
|
||||||
|
bin_file = os.path.join(weight_dir,
|
||||||
|
f"model_{layer_idx}_input_{st_idx+idx*3+2}.bin")
|
||||||
|
zero.numpy().tofile(bin_file)
|
||||||
|
|
||||||
if isinstance(weights[0], tuple):
|
if isinstance(weights[0], tuple):
|
||||||
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
||||||
|
|
@ -426,7 +490,8 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
|
||||||
dtype=np_dtype,
|
dtype=np_dtype,
|
||||||
n_splits_linear=n_splits_linear,
|
n_splits_linear=n_splits_linear,
|
||||||
n_splits_down_proj=n_splits_down_proj,
|
n_splits_down_proj=n_splits_down_proj,
|
||||||
group_size=group_size
|
group_size=group_size,
|
||||||
|
asym=asym
|
||||||
)
|
)
|
||||||
update_names_of_IR_and_export_blob(fused_decoder,
|
update_names_of_IR_and_export_blob(fused_decoder,
|
||||||
f"decoder_layer_{i}",
|
f"decoder_layer_{i}",
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue