LLM : Add llama ipex optimized (#10046)

* init ipex

* remove padding
This commit is contained in:
Wang, Jian4 2024-01-31 10:38:46 +08:00 committed by GitHub
parent 3685622f29
commit fb53b994f8
2 changed files with 45 additions and 1 deletions

View file

@ -95,3 +95,40 @@ Tokens generated 128
E2E Generation time xx.xxxxs
First token latency xx.xxxxs
```
### 4. Accelerate with BIGDL_OPT_IPEX
To accelerate speculative decoding on CPU, you can install our validated version of [IPEX 2.3.0+git0c63936](https://github.com/intel/intel-extension-for-pytorch/tree/0c63936d7a6740679987920367ae2e0cdb375b2e) by following steps: (Other versions of IPEX may have some conflicts and can not accelerate speculative decoding correctly.)
#### 4.1 Download IPEX installation script
```bash
# Depend on Conda and GCC 12.3
wget https://raw.githubusercontent.com/intel/intel-extension-for-pytorch/0c63936d7a6740679987920367ae2e0cdb375b2e/scripts/compile_bundle.sh
```
#### 4.2 Activate your conda environment
```bash
conda activate <your_conda_env>
```
#### 4.3 Set VER_IPEX in compile_bundle.sh to 0c63936d7a6740679987920367ae2e0cdb375b2e
```bash
sed -i 's/VER_IPEX=main/VER_IPEX=0c63936d7a6740679987920367ae2e0cdb375b2e/g' "compile_bundle.sh"
```
#### 4.4 Install IPEX and other dependencies
```bash
# Install IPEX 2.3.0+git0c63936
bash compile_bundle.sh
# Update transformers
pip install transformers==4.36.2
```
After installed IPEX, you can set `BIGDL_OPT_IPEX=true` to get target model acceleration. Currently `Llama2 7b and 13b` are supported.
```bash
source bigdl-llm-init -t
export BIGDL_OPT_IPEX=true
export OMP_NUM_THREADS=48 # you can change 48 here to #cores of one processor socket
numactl -C 0-47 -m 0 python ./speculative.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

View file

@ -73,6 +73,7 @@ if __name__ == '__main__':
optimize_model=True,
torch_dtype=torch.bfloat16,
load_in_low_bit="bf16",
torchscript=True,
speculative=True,
trust_remote_code=True,
use_cache=True)
@ -81,11 +82,16 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
inputs = tokenizer(prompt, return_tensors='pt')
input_ids = inputs.input_ids.to(model.device)
actual_in_len = input_ids.shape[1]
print("actual input_ids length:" + str(actual_in_len))
attention_mask = inputs.attention_mask.to(model.device)
# warmup
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
attention_mask=attention_mask,
do_sample=False)
output_str = tokenizer.decode(output[0])
@ -93,6 +99,7 @@ if __name__ == '__main__':
st = time.perf_counter()
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
attention_mask=attention_mask,
do_sample=False)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.perf_counter()