parent
							
								
									3685622f29
								
							
						
					
					
						commit
						fb53b994f8
					
				
					 2 changed files with 45 additions and 1 deletions
				
			
		| 
						 | 
					@ -95,3 +95,40 @@ Tokens generated 128
 | 
				
			||||||
E2E Generation time xx.xxxxs
 | 
					E2E Generation time xx.xxxxs
 | 
				
			||||||
First token latency xx.xxxxs
 | 
					First token latency xx.xxxxs
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 4. Accelerate with BIGDL_OPT_IPEX
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To accelerate speculative decoding on CPU, you can install our validated version of [IPEX 2.3.0+git0c63936](https://github.com/intel/intel-extension-for-pytorch/tree/0c63936d7a6740679987920367ae2e0cdb375b2e) by following steps: (Other versions of IPEX may have some conflicts and can not accelerate speculative decoding correctly.)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 4.1 Download IPEX installation script
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# Depend on Conda and GCC 12.3
 | 
				
			||||||
 | 
					wget https://raw.githubusercontent.com/intel/intel-extension-for-pytorch/0c63936d7a6740679987920367ae2e0cdb375b2e/scripts/compile_bundle.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 4.2 Activate your conda environment
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda activate <your_conda_env>
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					#### 4.3 Set VER_IPEX in compile_bundle.sh to 0c63936d7a6740679987920367ae2e0cdb375b2e
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					sed -i 's/VER_IPEX=main/VER_IPEX=0c63936d7a6740679987920367ae2e0cdb375b2e/g' "compile_bundle.sh"
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 4.4 Install IPEX and other dependencies
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# Install IPEX 2.3.0+git0c63936
 | 
				
			||||||
 | 
					bash compile_bundle.sh 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Update transformers
 | 
				
			||||||
 | 
					pip install transformers==4.36.2
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installed IPEX, you can set `BIGDL_OPT_IPEX=true` to get target model acceleration. Currently `Llama2 7b and 13b` are supported.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source bigdl-llm-init -t
 | 
				
			||||||
 | 
					export BIGDL_OPT_IPEX=true
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48 # you can change 48 here to #cores of one processor socket
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./speculative.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -73,6 +73,7 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 optimize_model=True,
 | 
					                                                 optimize_model=True,
 | 
				
			||||||
                                                 torch_dtype=torch.bfloat16,
 | 
					                                                 torch_dtype=torch.bfloat16,
 | 
				
			||||||
                                                 load_in_low_bit="bf16",
 | 
					                                                 load_in_low_bit="bf16",
 | 
				
			||||||
 | 
					                                                 torchscript=True,
 | 
				
			||||||
                                                 speculative=True,
 | 
					                                                 speculative=True,
 | 
				
			||||||
                                                 trust_remote_code=True,
 | 
					                                                 trust_remote_code=True,
 | 
				
			||||||
                                                 use_cache=True)
 | 
					                                                 use_cache=True)
 | 
				
			||||||
| 
						 | 
					@ -81,11 +82,16 @@ if __name__ == '__main__':
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer(prompt, return_tensors='pt').input_ids
 | 
					        inputs = tokenizer(prompt, return_tensors='pt')
 | 
				
			||||||
 | 
					        input_ids = inputs.input_ids.to(model.device)
 | 
				
			||||||
 | 
					        actual_in_len = input_ids.shape[1]
 | 
				
			||||||
 | 
					        print("actual input_ids length:" + str(actual_in_len))
 | 
				
			||||||
 | 
					        attention_mask = inputs.attention_mask.to(model.device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # warmup
 | 
					        # warmup
 | 
				
			||||||
        output = model.generate(input_ids,
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
                                max_new_tokens=args.n_predict,
 | 
					                                max_new_tokens=args.n_predict,
 | 
				
			||||||
 | 
					                                attention_mask=attention_mask,
 | 
				
			||||||
                                do_sample=False)
 | 
					                                do_sample=False)
 | 
				
			||||||
        output_str = tokenizer.decode(output[0])
 | 
					        output_str = tokenizer.decode(output[0])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -93,6 +99,7 @@ if __name__ == '__main__':
 | 
				
			||||||
        st = time.perf_counter()
 | 
					        st = time.perf_counter()
 | 
				
			||||||
        output = model.generate(input_ids,
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
                                max_new_tokens=args.n_predict,
 | 
					                                max_new_tokens=args.n_predict,
 | 
				
			||||||
 | 
					                                attention_mask=attention_mask,
 | 
				
			||||||
                                do_sample=False)
 | 
					                                do_sample=False)
 | 
				
			||||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
        end = time.perf_counter()
 | 
					        end = time.perf_counter()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue