parent
3685622f29
commit
fb53b994f8
2 changed files with 45 additions and 1 deletions
|
|
@ -95,3 +95,40 @@ Tokens generated 128
|
||||||
E2E Generation time xx.xxxxs
|
E2E Generation time xx.xxxxs
|
||||||
First token latency xx.xxxxs
|
First token latency xx.xxxxs
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### 4. Accelerate with BIGDL_OPT_IPEX
|
||||||
|
|
||||||
|
To accelerate speculative decoding on CPU, you can install our validated version of [IPEX 2.3.0+git0c63936](https://github.com/intel/intel-extension-for-pytorch/tree/0c63936d7a6740679987920367ae2e0cdb375b2e) by following steps: (Other versions of IPEX may have some conflicts and can not accelerate speculative decoding correctly.)
|
||||||
|
|
||||||
|
#### 4.1 Download IPEX installation script
|
||||||
|
```bash
|
||||||
|
# Depend on Conda and GCC 12.3
|
||||||
|
wget https://raw.githubusercontent.com/intel/intel-extension-for-pytorch/0c63936d7a6740679987920367ae2e0cdb375b2e/scripts/compile_bundle.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4.2 Activate your conda environment
|
||||||
|
```bash
|
||||||
|
conda activate <your_conda_env>
|
||||||
|
```
|
||||||
|
#### 4.3 Set VER_IPEX in compile_bundle.sh to 0c63936d7a6740679987920367ae2e0cdb375b2e
|
||||||
|
```bash
|
||||||
|
sed -i 's/VER_IPEX=main/VER_IPEX=0c63936d7a6740679987920367ae2e0cdb375b2e/g' "compile_bundle.sh"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4.4 Install IPEX and other dependencies
|
||||||
|
```bash
|
||||||
|
# Install IPEX 2.3.0+git0c63936
|
||||||
|
bash compile_bundle.sh
|
||||||
|
|
||||||
|
# Update transformers
|
||||||
|
pip install transformers==4.36.2
|
||||||
|
```
|
||||||
|
|
||||||
|
After installed IPEX, you can set `BIGDL_OPT_IPEX=true` to get target model acceleration. Currently `Llama2 7b and 13b` are supported.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source bigdl-llm-init -t
|
||||||
|
export BIGDL_OPT_IPEX=true
|
||||||
|
export OMP_NUM_THREADS=48 # you can change 48 here to #cores of one processor socket
|
||||||
|
numactl -C 0-47 -m 0 python ./speculative.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
|
||||||
|
|
@ -73,6 +73,7 @@ if __name__ == '__main__':
|
||||||
optimize_model=True,
|
optimize_model=True,
|
||||||
torch_dtype=torch.bfloat16,
|
torch_dtype=torch.bfloat16,
|
||||||
load_in_low_bit="bf16",
|
load_in_low_bit="bf16",
|
||||||
|
torchscript=True,
|
||||||
speculative=True,
|
speculative=True,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
use_cache=True)
|
use_cache=True)
|
||||||
|
|
@ -81,11 +82,16 @@ if __name__ == '__main__':
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
|
inputs = tokenizer(prompt, return_tensors='pt')
|
||||||
|
input_ids = inputs.input_ids.to(model.device)
|
||||||
|
actual_in_len = input_ids.shape[1]
|
||||||
|
print("actual input_ids length:" + str(actual_in_len))
|
||||||
|
attention_mask = inputs.attention_mask.to(model.device)
|
||||||
|
|
||||||
# warmup
|
# warmup
|
||||||
output = model.generate(input_ids,
|
output = model.generate(input_ids,
|
||||||
max_new_tokens=args.n_predict,
|
max_new_tokens=args.n_predict,
|
||||||
|
attention_mask=attention_mask,
|
||||||
do_sample=False)
|
do_sample=False)
|
||||||
output_str = tokenizer.decode(output[0])
|
output_str = tokenizer.decode(output[0])
|
||||||
|
|
||||||
|
|
@ -93,6 +99,7 @@ if __name__ == '__main__':
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
output = model.generate(input_ids,
|
output = model.generate(input_ids,
|
||||||
max_new_tokens=args.n_predict,
|
max_new_tokens=args.n_predict,
|
||||||
|
attention_mask=attention_mask,
|
||||||
do_sample=False)
|
do_sample=False)
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
end = time.perf_counter()
|
end = time.perf_counter()
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue