[LLM] refactor cpu low-bit forward logic (#9366)
* [LLM] refactor cpu low-bit forward logic * fix style * Update low_bit_linear.py * Update low_bit_linear.py * refine
This commit is contained in:
		
							parent
							
								
									af94058203
								
							
						
					
					
						commit
						fae6db3ddc
					
				
					 1 changed files with 10 additions and 18 deletions
				
			
		| 
						 | 
				
			
			@ -465,31 +465,23 @@ class LowBitLinear(nn.Linear):
 | 
			
		|||
            if self.training and x.requires_grad:
 | 
			
		||||
                result = MatMulLowBitCPU.apply(x, self.weight)
 | 
			
		||||
            else:
 | 
			
		||||
                # Step 1. convert if necessary, and compute a linear result
 | 
			
		||||
                if IS_SERVER and (not IS_SPR) and \
 | 
			
		||||
                        self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
 | 
			
		||||
                    x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
 | 
			
		||||
                    if self.mp_group is None:
 | 
			
		||||
                        # none-distributed mode
 | 
			
		||||
                        result = F.linear(x, x0_fp32, self.bias)
 | 
			
		||||
                    else:
 | 
			
		||||
                        result = F.linear(x, x0_fp32)
 | 
			
		||||
                        from deepspeed import comm as dist
 | 
			
		||||
                        # Parallel F.linear should be avoided,
 | 
			
		||||
                        # thus deepspeed allreduce after the operation
 | 
			
		||||
                        dist.inference_all_reduce(result, group=self.mp_group)
 | 
			
		||||
                        if self.bias is not None:
 | 
			
		||||
                            result += self.bias
 | 
			
		||||
                    result = F.linear(x, x0_fp32)
 | 
			
		||||
                else:
 | 
			
		||||
                    # Weight does not need a convert
 | 
			
		||||
                    result = ggml_matmul_src1_x_src0_t(x0, x_2d, self.weight_shape, self.qtype)
 | 
			
		||||
                    new_shape = x_shape[:-1] + (self.out_len,)
 | 
			
		||||
                    result = result.view(new_shape)
 | 
			
		||||
                    # bias is consistent among multi instances,
 | 
			
		||||
                    # deepspeed only allreduce result without bias to reduce comunication
 | 
			
		||||
                    if self.mp_group is not None:
 | 
			
		||||
                        from deepspeed import comm as dist
 | 
			
		||||
                        dist.inference_all_reduce(result, group=self.mp_group)
 | 
			
		||||
                    if self.bias is not None:
 | 
			
		||||
                        result += self.bias
 | 
			
		||||
                # Step 2. allreduce to combine partial results and add bias if necessary
 | 
			
		||||
                if self.mp_group is not None:
 | 
			
		||||
                    # deepspeed distibuted mode
 | 
			
		||||
                    from deepspeed import comm as dist
 | 
			
		||||
                    dist.inference_all_reduce(result, group=self.mp_group)
 | 
			
		||||
                if self.bias is not None:
 | 
			
		||||
                    result += self.bias
 | 
			
		||||
        return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue