use sdp fp8 causal kernel (#11023)
This commit is contained in:
		
							parent
							
								
									c34f85e7d0
								
							
						
					
					
						commit
						fad1dbaf60
					
				
					 1 changed files with 24 additions and 23 deletions
				
			
		| 
						 | 
					@ -137,38 +137,39 @@ def attention_forward(
 | 
				
			||||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
					        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
				
			||||||
                                                         self.layer_idx, None)
 | 
					                                                         self.layer_idx, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (isinstance(past_key_value, DynamicFp8Cache) and
 | 
					    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
            use_sdp_fp8(q_len, kv_seq_len, query_states)):
 | 
					 | 
				
			||||||
        import linear_q4_0
 | 
					        import linear_q4_0
 | 
				
			||||||
        attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
    elif (isinstance(past_key_value, DynamicNormalCache) and
 | 
					            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
            use_sdp(q_len, kv_seq_len, self.head_dim, query_states)):
 | 
					                                              attention_mask)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import linear_q4_0
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
 | 
					            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
                                                            query_states.dtype)
 | 
					                                                            query_states.dtype)
 | 
				
			||||||
        if use_sdp_causal(q_len, kv_seq_len, query_states, self.training):
 | 
					        # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
            import linear_q4_0
 | 
					        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            # repeat k/v heads if n_kv_heads < n_heads
 | 
					 | 
				
			||||||
            key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
            value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            attn_weights = torch.matmul(query_states,
 | 
					        attn_weights = torch.matmul(query_states,
 | 
				
			||||||
                                        key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
					                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if attention_mask is not None:
 | 
					        if attention_mask is not None:
 | 
				
			||||||
                attn_weights = attn_weights + attention_mask
 | 
					            attn_weights = attn_weights + attention_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # upcast attention to fp32
 | 
					        # upcast attention to fp32
 | 
				
			||||||
            attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
					        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
				
			||||||
                                                       dtype=torch.float32).to(value_states.dtype)
 | 
					                                                   dtype=torch.float32).to(value_states.dtype)
 | 
				
			||||||
            attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
					        attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
				
			||||||
                                                       training=self.training)
 | 
					                                                   training=self.training)
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					        attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue