Remove manual importing ipex in all-in-one benchmark (#11272)
This commit is contained in:
parent
70b17c87be
commit
fac49f15e3
1 changed files with 0 additions and 9 deletions
|
|
@ -446,7 +446,6 @@ def run_transformer_int4_gpu(repo_id,
|
|||
lookahead=False):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
@ -556,7 +555,6 @@ def run_optimize_model_gpu(repo_id,
|
|||
batch_size):
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
from ipex_llm import optimize_model
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
@ -635,7 +633,6 @@ def run_ipex_fp16_gpu(repo_id,
|
|||
batch_size):
|
||||
from transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
|
|
@ -707,7 +704,6 @@ def run_bigdl_fp16_gpu(repo_id,
|
|||
batch_size):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
|
|
@ -878,7 +874,6 @@ def run_transformer_int4_gpu_win(repo_id,
|
|||
streaming):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
@ -983,7 +978,6 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
|
|||
streaming):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
@ -1092,7 +1086,6 @@ def run_transformer_int4_loadlowbit_gpu_win(repo_id,
|
|||
streaming):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load BigDL-LLM optimized low bit model
|
||||
st = time.perf_counter()
|
||||
|
|
@ -1487,7 +1480,6 @@ def run_deepspeed_optimize_model_gpu(repo_id,
|
|||
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
from ipex_llm import optimize_model
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import deepspeed
|
||||
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
|
||||
from deepspeed.accelerator import set_accelerator, get_accelerator
|
||||
|
|
@ -1749,7 +1741,6 @@ def run_pipeline_parallel_gpu(repo_id,
|
|||
n_gpu=2):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
|
|||
Loading…
Reference in a new issue