LLM: make pipeline parallel inference example more common (#10786)
This commit is contained in:
parent
328b1a1de9
commit
fabf54e052
2 changed files with 22 additions and 17 deletions
|
|
@ -38,7 +38,7 @@ python setup.py install
|
|||
|
||||
> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
|
||||
|
||||
### 2. Run tensor parallel inference on multiple GPUs
|
||||
### 2. Run pipeline parallel inference on multiple GPUs
|
||||
Here, we provide example usages on different models and different hardwares. Please refer to the appropriate script based on your model and device:
|
||||
|
||||
### 3. Run
|
||||
|
|
@ -51,13 +51,14 @@ export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
|||
```
|
||||
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --gpu-num GPU_NUM
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
- `--gpu-num GPU_NUM`: argument defining the number of GPU to use. It is default to be `2`.
|
||||
|
||||
#### Sample Output
|
||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ import time
|
|||
import argparse
|
||||
|
||||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
|
|
@ -51,6 +51,7 @@ if __name__ == '__main__':
|
|||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
|
@ -62,19 +63,19 @@ if __name__ == '__main__':
|
|||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True)
|
||||
first_half = ['model.embed_tokens', 'model.layers.0', 'model.layers.1', 'model.layers.2',
|
||||
'model.layers.3', 'model.layers.4', 'model.layers.5', 'model.layers.6',
|
||||
'model.layers.7', 'model.layers.8', 'model.layers.9', 'model.layers.10',
|
||||
'model.layers.11', 'model.layers.12', 'model.layers.13', 'model.layers.14',
|
||||
'model.layers.15']
|
||||
second_half = ['model.layers.16', 'model.layers.17', 'model.layers.18', 'model.layers.19',
|
||||
'model.layers.20', 'model.layers.21', 'model.layers.22', 'model.layers.23',
|
||||
'model.layers.24', 'model.layers.25', 'model.layers.26', 'model.layers.27',
|
||||
'model.layers.28', 'model.layers.29', 'model.layers.30', 'model.layers.31',
|
||||
'model.norm', 'lm_head']
|
||||
|
||||
device_map=({key: 'xpu:0' for key in first_half})
|
||||
device_map.update({key: 'xpu:1' for key in second_half})
|
||||
model_layers = ['model.embed_tokens']
|
||||
for i in range(model.config.num_hidden_layers):
|
||||
model_layers.append(f'model.layers.{i}')
|
||||
model_layers = model_layers + ['model.norm', 'lm_head']
|
||||
|
||||
device_map = {}
|
||||
split_len = len(model_layers) // args.gpu_num
|
||||
for i in range(args.gpu_num):
|
||||
device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * i: split_len * (i + 1)]})
|
||||
if i == args.gpu_num - 1:
|
||||
device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * (i + 1): ]})
|
||||
|
||||
from accelerate import dispatch_model
|
||||
model = dispatch_model(
|
||||
model,
|
||||
|
|
@ -84,7 +85,7 @@ if __name__ == '__main__':
|
|||
)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
|
|
@ -92,8 +93,10 @@ if __name__ == '__main__':
|
|||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu:0')
|
||||
# ipex_llm model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
do_sample=False,
|
||||
max_new_tokens=args.n_predict)
|
||||
output = model.generate(input_ids,
|
||||
do_sample=False,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
|
|
@ -103,6 +106,7 @@ if __name__ == '__main__':
|
|||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with IPEX-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
do_sample=False,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
|
|
|
|||
Loading…
Reference in a new issue