LLM: make pipeline parallel inference example more common (#10786)
This commit is contained in:
		
							parent
							
								
									328b1a1de9
								
							
						
					
					
						commit
						fabf54e052
					
				
					 2 changed files with 22 additions and 17 deletions
				
			
		| 
						 | 
				
			
			@ -38,7 +38,7 @@ python setup.py install
 | 
			
		|||
 | 
			
		||||
> **Important**: IPEX 2.1.10+xpu requires Intel® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version.
 | 
			
		||||
 | 
			
		||||
### 2. Run tensor parallel inference on multiple GPUs
 | 
			
		||||
### 2. Run pipeline parallel inference on multiple GPUs
 | 
			
		||||
Here, we provide example usages on different models and different hardwares. Please refer to the appropriate script based on your model and device:
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
| 
						 | 
				
			
			@ -51,13 +51,14 @@ export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		|||
```
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --gpu-num GPU_NUM
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
- `--gpu-num GPU_NUM`: argument defining the number of GPU to use. It is default to be `2`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -21,7 +21,7 @@ import time
 | 
			
		|||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers import AutoModelForCausalLM
 | 
			
		||||
from transformers import LlamaTokenizer
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
			
		||||
| 
						 | 
				
			
			@ -51,6 +51,7 @@ if __name__ == '__main__':
 | 
			
		|||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
    parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
| 
						 | 
				
			
			@ -62,19 +63,19 @@ if __name__ == '__main__':
 | 
			
		|||
                                                 optimize_model=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    first_half = ['model.embed_tokens', 'model.layers.0', 'model.layers.1', 'model.layers.2',
 | 
			
		||||
                  'model.layers.3', 'model.layers.4', 'model.layers.5', 'model.layers.6',
 | 
			
		||||
                  'model.layers.7', 'model.layers.8', 'model.layers.9', 'model.layers.10',
 | 
			
		||||
                  'model.layers.11', 'model.layers.12', 'model.layers.13', 'model.layers.14',
 | 
			
		||||
                  'model.layers.15']
 | 
			
		||||
    second_half = ['model.layers.16', 'model.layers.17', 'model.layers.18', 'model.layers.19',
 | 
			
		||||
                   'model.layers.20', 'model.layers.21', 'model.layers.22', 'model.layers.23',
 | 
			
		||||
                   'model.layers.24', 'model.layers.25', 'model.layers.26', 'model.layers.27',
 | 
			
		||||
                   'model.layers.28', 'model.layers.29', 'model.layers.30', 'model.layers.31',
 | 
			
		||||
                   'model.norm', 'lm_head']
 | 
			
		||||
 | 
			
		||||
    device_map=({key: 'xpu:0' for key in first_half})
 | 
			
		||||
    device_map.update({key: 'xpu:1' for key in second_half})
 | 
			
		||||
    model_layers = ['model.embed_tokens']
 | 
			
		||||
    for i in range(model.config.num_hidden_layers):
 | 
			
		||||
        model_layers.append(f'model.layers.{i}')
 | 
			
		||||
    model_layers = model_layers + ['model.norm', 'lm_head']
 | 
			
		||||
 | 
			
		||||
    device_map = {}
 | 
			
		||||
    split_len = len(model_layers) // args.gpu_num
 | 
			
		||||
    for i in range(args.gpu_num):
 | 
			
		||||
        device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * i: split_len * (i + 1)]})
 | 
			
		||||
        if i == args.gpu_num - 1:
 | 
			
		||||
            device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * (i + 1): ]})
 | 
			
		||||
 | 
			
		||||
    from accelerate import dispatch_model
 | 
			
		||||
    model = dispatch_model(
 | 
			
		||||
        model,
 | 
			
		||||
| 
						 | 
				
			
			@ -84,7 +85,7 @@ if __name__ == '__main__':
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
| 
						 | 
				
			
			@ -92,8 +93,10 @@ if __name__ == '__main__':
 | 
			
		|||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu:0')
 | 
			
		||||
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                do_sample=False,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                do_sample=False,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
 | 
			
		||||
        # start inference
 | 
			
		||||
| 
						 | 
				
			
			@ -103,6 +106,7 @@ if __name__ == '__main__':
 | 
			
		|||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
			
		||||
        # to obtain optimal performance with IPEX-LLM INT4 optimizations
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                do_sample=False,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue