torch 2.3 inference docker (#12517)
* torch 2.3 inference docker * Update README.md * add convert code * rename image * remove 2.1 and add graph example * Update README.md
This commit is contained in:
		
							parent
							
								
									b747f3f6b8
								
							
						
					
					
						commit
						fa261b8af1
					
				
					 4 changed files with 352 additions and 6 deletions
				
			
		| 
						 | 
				
			
			@ -1,4 +1,4 @@
 | 
			
		|||
FROM intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04
 | 
			
		||||
FROM intel/oneapi:2024.2.1-0-devel-ubuntu22.04
 | 
			
		||||
 | 
			
		||||
ARG http_proxy
 | 
			
		||||
ARG https_proxy
 | 
			
		||||
| 
						 | 
				
			
			@ -29,6 +29,19 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
			
		|||
    env DEBIAN_FRONTEND=noninteractive apt-get update && \
 | 
			
		||||
    # add-apt-repository requires gnupg, gpg-agent, software-properties-common
 | 
			
		||||
    apt-get install -y --no-install-recommends gnupg gpg-agent software-properties-common && \
 | 
			
		||||
    export PRE_DIR=$(pwd) && \
 | 
			
		||||
    # Install Compute Runtime
 | 
			
		||||
    mkdir -p /tmp/neo && \
 | 
			
		||||
    cd /tmp/neo && \
 | 
			
		||||
    wget https://github.com/oneapi-src/level-zero/releases/download/v1.18.5/level-zero_1.18.5+u22.04_amd64.deb && \
 | 
			
		||||
    wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17791.9/intel-igc-core_1.0.17791.9_amd64.deb && \
 | 
			
		||||
    wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17791.9/intel-igc-opencl_1.0.17791.9_amd64.deb && \
 | 
			
		||||
    wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/intel-level-zero-gpu_1.6.31294.12_amd64.deb && \
 | 
			
		||||
    wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/intel-opencl-icd_24.39.31294.12_amd64.deb && \
 | 
			
		||||
    wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/libigdgmm12_22.5.2_amd64.deb && \
 | 
			
		||||
    dpkg -i *.deb && \
 | 
			
		||||
    rm -rf /tmp/neo && \
 | 
			
		||||
    cd $PRE_DIR && \
 | 
			
		||||
    # Add Python 3.11 PPA repository
 | 
			
		||||
    add-apt-repository ppa:deadsnakes/ppa -y && \
 | 
			
		||||
    apt-get install -y --no-install-recommends python3.11 git curl wget && \
 | 
			
		||||
| 
						 | 
				
			
			@ -41,13 +54,12 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
			
		|||
    python3 get-pip.py && \
 | 
			
		||||
    rm get-pip.py && \
 | 
			
		||||
    pip install --upgrade requests argparse urllib3 && \
 | 
			
		||||
    pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
			
		||||
    pip install --pre --upgrade ipex-llm[xpu_arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
			
		||||
    pip install --pre pytorch-triton-xpu==3.0.0+1b2f15840e --index-url https://download.pytorch.org/whl/nightly/xpu && \
 | 
			
		||||
    # Fix Trivy CVE Issues
 | 
			
		||||
    pip install transformers==4.36.2 && \
 | 
			
		||||
    pip install transformers_stream_generator einops tiktoken && \
 | 
			
		||||
    # Install opencl-related repos
 | 
			
		||||
    apt-get update && \
 | 
			
		||||
    apt-get install -y --no-install-recommends intel-opencl-icd=23.35.27191.42-775~22.04 intel-level-zero-gpu=1.3.27191.42-775~22.04 level-zero=1.14.0-744~22.04 && \
 | 
			
		||||
    # Install related libary of chat.py
 | 
			
		||||
    pip install --upgrade colorama && \
 | 
			
		||||
    # Download all-in-one benchmark and examples
 | 
			
		||||
| 
						 | 
				
			
			@ -71,7 +83,7 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
			
		|||
    # Download Deepspeed-AutoTP
 | 
			
		||||
    cp -r ./ipex-llm/python/llm/example/GPU/Deepspeed-AutoTP/ ./Deepspeed-AutoTP && \
 | 
			
		||||
    # Install related library of Deepspeed-AutoTP
 | 
			
		||||
    pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
			
		||||
    pip install oneccl_bind_pt==2.3.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
			
		||||
    pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5 && \
 | 
			
		||||
    pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b && \
 | 
			
		||||
    pip install mpi4py && \
 | 
			
		||||
| 
						 | 
				
			
			@ -82,3 +94,4 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
WORKDIR /llm/
 | 
			
		||||
ENV BIGDL_CHECK_DUPLICATE_IMPORT=0
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										48
									
								
								python/llm/example/GPU/GraphMode/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										48
									
								
								python/llm/example/GPU/GraphMode/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,48 @@
 | 
			
		|||
# Torch Graph Mode
 | 
			
		||||
 | 
			
		||||
Here, we provide how to run [torch graph mode](https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/) on Intel Arc™ A-Series Graphics with ipex-llm, and [gpt2-medium](https://huggingface.co/openai-community/gpt2-medium) for classification task is used as illustration:
 | 
			
		||||
 | 
			
		||||
### 1. Install
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n ipex-llm python=3.11
 | 
			
		||||
conda activate ipex-llm
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu_arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
 | 
			
		||||
pip install --pre pytorch-triton-xpu==3.0.0+1b2f15840e --index-url https://download.pytorch.org/whl/nightly/xpu
 | 
			
		||||
conda install -c conda-forge libstdcxx-ng
 | 
			
		||||
unset OCL_ICD_VENDORS
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Skip this step if you are running on Windows.
 | 
			
		||||
 | 
			
		||||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
 | 
			
		||||
Convert text-generating GPT2-Medium to the classification:
 | 
			
		||||
 | 
			
		||||
   ```bash
 | 
			
		||||
   # The convert step needs to access the internet
 | 
			
		||||
   export http_proxy=http://your_proxy_url
 | 
			
		||||
   export https_proxy=http://your_proxy_url
 | 
			
		||||
 | 
			
		||||
   # This will yield gpt2-medium-classification under /llm/models in the container
 | 
			
		||||
   python convert-model-textgen-to-classfication.py --model-path MODEL_PATH
 | 
			
		||||
   ```
 | 
			
		||||
 | 
			
		||||
This will yield a mode directory ends with '-classification' neart your input model path.
 | 
			
		||||
 | 
			
		||||
Benchmark GPT2-Medium's performance with IPEX-LLM engine:
 | 
			
		||||
 | 
			
		||||
   ``` sbash
 | 
			
		||||
   ipexrun xpu gpt2-graph-mode-benchmark.py --device xpu --engine ipex-llm --batch 16 --model-path MODEL_PATH
 | 
			
		||||
 | 
			
		||||
   # You will see the key output like:
 | 
			
		||||
   # Average time taken (excluding the first two loops): xxxx seconds, Classification per seconds is xxxx
 | 
			
		||||
   ```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,57 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/convert-model-textgen-to-classfication.py
 | 
			
		||||
#
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, AutoModelForCausalLM
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
parser = argparse.ArgumentParser(description='Process some integers.')
 | 
			
		||||
parser.add_argument('--model_path', type=str, help='an string for the device')
 | 
			
		||||
args = parser.parse_args()
 | 
			
		||||
model_path = args.model_path
 | 
			
		||||
 | 
			
		||||
dtype=torch.bfloat16
 | 
			
		||||
num_labels = 5
 | 
			
		||||
 | 
			
		||||
model_name=model_path
 | 
			
		||||
 | 
			
		||||
save_directory = model_name + "-classification"
 | 
			
		||||
 | 
			
		||||
# Initialize the tokenizer
 | 
			
		||||
# Need padding from the left and padding to 1024
 | 
			
		||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 | 
			
		||||
# tokenizer.padding_side = "left"
 | 
			
		||||
tokenizer.pad_token = tokenizer.eos_token
 | 
			
		||||
tokenizer.save_pretrained(save_directory)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id,)
 | 
			
		||||
config = AutoConfig.from_pretrained(model_name)
 | 
			
		||||
print("text gen model")
 | 
			
		||||
print(model)
 | 
			
		||||
print(config)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, torch_dtype=dtype)
 | 
			
		||||
save_directory = model_name + "-classification"
 | 
			
		||||
model.save_pretrained(save_directory)    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
model = AutoModelForSequenceClassification.from_pretrained(save_directory, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id)
 | 
			
		||||
config = AutoConfig.from_pretrained(save_directory)
 | 
			
		||||
print("text classification model")
 | 
			
		||||
print(model)
 | 
			
		||||
print(config)
 | 
			
		||||
							
								
								
									
										228
									
								
								python/llm/example/GPU/GraphMode/gpt2-graph-mode-benchmark.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										228
									
								
								python/llm/example/GPU/GraphMode/gpt2-graph-mode-benchmark.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,228 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/gpt2-benchmark-for-sangfor.py
 | 
			
		||||
#
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
 | 
			
		||||
from torch.profiler import profile, record_function, ProfilerActivity, schedule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Get the batch size and device
 | 
			
		||||
parser = argparse.ArgumentParser(description='Process some integers.')
 | 
			
		||||
parser.add_argument('--batch_size', type=int, default=1, help='an integer for the batch size')
 | 
			
		||||
parser.add_argument('--device', type=str, default='cpu', help='an string for the device')
 | 
			
		||||
parser.add_argument('--profile', type=bool, default=False, help='enable protch profiler for CPU/XPU')
 | 
			
		||||
parser.add_argument('--engine', type=str, default='ipex-llm', help='an string for the device')
 | 
			
		||||
parser.add_argument('--model_path', type=str, help='an string for the device')
 | 
			
		||||
args = parser.parse_args()
 | 
			
		||||
enable_profile=args.profile
 | 
			
		||||
batch_size = args.batch_size
 | 
			
		||||
device = args.device
 | 
			
		||||
engine = args.engine
 | 
			
		||||
model_path = args.model_path
 | 
			
		||||
print(f"The batch size is: {batch_size}, device is {device}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
######################################################################################
 | 
			
		||||
# PyTorch Profiling with IPEX
 | 
			
		||||
# export IPEX_ZE_TRACING=1
 | 
			
		||||
# export ZE_ENABLE_TRACING_LAYER=1
 | 
			
		||||
import contextlib
 | 
			
		||||
def profiler_setup(profiling=False, *args, **kwargs):
 | 
			
		||||
    if profiling:
 | 
			
		||||
        return torch.profiler.profile(*args, **kwargs)
 | 
			
		||||
    else:
 | 
			
		||||
        return contextlib.nullcontext()
 | 
			
		||||
 | 
			
		||||
my_schedule = schedule(
 | 
			
		||||
    skip_first=6,
 | 
			
		||||
    wait=1,
 | 
			
		||||
    warmup=1,
 | 
			
		||||
    active=1
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
# also define a handler for outputing results
 | 
			
		||||
def trace_handler(p):
 | 
			
		||||
    if(device == 'xpu'):
 | 
			
		||||
        print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
 | 
			
		||||
    print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
 | 
			
		||||
    # p.export_chrome_trace("./trace_" + str(p.step_num) + ".json")
 | 
			
		||||
#######################################################################################
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
 | 
			
		||||
num_labels = 5
 | 
			
		||||
 | 
			
		||||
model_name = model_path
 | 
			
		||||
 | 
			
		||||
model_name = model_name + "-classification"
 | 
			
		||||
model_name_ov = model_name + "-ov"
 | 
			
		||||
model_name_ov = model_name_ov + "-fp16"
 | 
			
		||||
 | 
			
		||||
if (engine == 'ipex') :
 | 
			
		||||
    import torch
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
    # Need padding from the left and padding to 1024
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 | 
			
		||||
    tokenizer.padding_side = "left"
 | 
			
		||||
    tokenizer.pad_token = tokenizer.eos_token
 | 
			
		||||
 | 
			
		||||
    model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
 | 
			
		||||
                                                               pad_token_id=tokenizer.eos_token_id,
 | 
			
		||||
                                                               low_cpu_mem_usage=True
 | 
			
		||||
                                                               ).eval().to(device)
 | 
			
		||||
elif (engine == 'ipex-llm'):
 | 
			
		||||
    from ipex_llm.transformers import AutoModelForSequenceClassification
 | 
			
		||||
    from transformers import AutoTokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
 | 
			
		||||
    tokenizer.padding_side = "left"
 | 
			
		||||
    tokenizer.pad_token = tokenizer.eos_token
 | 
			
		||||
    model = AutoModelForSequenceClassification.from_pretrained(model_name,
 | 
			
		||||
                                                               torch_dtype=dtype,
 | 
			
		||||
                                                               load_in_low_bit="fp16",
 | 
			
		||||
                                                               pad_token_id=tokenizer.eos_token_id,
 | 
			
		||||
                                                               low_cpu_mem_usage=True).to(device)
 | 
			
		||||
    model = torch.compile(model, backend='inductor')
 | 
			
		||||
    print(model)
 | 
			
		||||
else:
 | 
			
		||||
    from optimum.intel import OVModelForSequenceClassification
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_name_ov, trust_remote_code=True)
 | 
			
		||||
    tokenizer.padding_side = "left"
 | 
			
		||||
    tokenizer.pad_token = tokenizer.eos_token
 | 
			
		||||
    model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Intel(R) Extension for PyTorch*
 | 
			
		||||
if engine == 'ipex':
 | 
			
		||||
    if device == 'cpu':
 | 
			
		||||
        # model = ipex.llm.optimize(model, dtype=dtype, inplace=True, deployment_mode=True)
 | 
			
		||||
        # ############## TorchDynamo ###############
 | 
			
		||||
        model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
 | 
			
		||||
        model = torch.compile(model, backend='ipex')
 | 
			
		||||
        # ##########################################
 | 
			
		||||
    else:    # Intel XPU
 | 
			
		||||
        #model = ipex.llm.optimize(model, dtype=dtype, device="xpu", inplace=True)
 | 
			
		||||
        model = ipex.optimize(model, dtype=dtype, inplace=True)
 | 
			
		||||
 | 
			
		||||
    model=torch.compile(model, backend="inductor")
 | 
			
		||||
    print(model)
 | 
			
		||||
 | 
			
		||||
    # # #######calulate the total num of parameters########
 | 
			
		||||
    # def model_size(model):
 | 
			
		||||
    #     return sum(t.numel() for t in model.parameters())
 | 
			
		||||
    # print(f"GPT2 size: {model_size(model)/1000**2:.1f}M parameters")
 | 
			
		||||
    # # # #######print model information  ###################
 | 
			
		||||
    # print(model)
 | 
			
		||||
 | 
			
		||||
    # ########Enable the BetterTransformer  ###################
 | 
			
		||||
    # only Better Transformer only support GPT2, not support Qwen2
 | 
			
		||||
    # model = BetterTransformer.transform(model)
 | 
			
		||||
#elif engine == 'ipex-llm':
 | 
			
		||||
#    model = ipex.optimize(model, dtype=dtype, inplace=True)
 | 
			
		||||
#    model=torch.compile(model) #backend="inductor")
 | 
			
		||||
elif engine == 'ov':
 | 
			
		||||
    print("OV inference")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
prompt = ["this is the first prompt"]
 | 
			
		||||
prompts = prompt * batch_size
 | 
			
		||||
#print(prompts)
 | 
			
		||||
 | 
			
		||||
# Tokenize the batch of prompts
 | 
			
		||||
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
 | 
			
		||||
# print(inputs)
 | 
			
		||||
 | 
			
		||||
if engine == 'ipex' or engine == 'ipex-llm':
 | 
			
		||||
    #ipex need move the inputs to device, but OV doesn't need
 | 
			
		||||
    inputs.to(device)
 | 
			
		||||
 | 
			
		||||
    # Initialize an empty list to store elapsed times
 | 
			
		||||
    elapsed_times = []
 | 
			
		||||
 | 
			
		||||
    # Loop for batch processing 10 times and calculate the time for every loop
 | 
			
		||||
    with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
 | 
			
		||||
        schedule=my_schedule,
 | 
			
		||||
        on_trace_ready=trace_handler,
 | 
			
		||||
        # on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/gpt2'),
 | 
			
		||||
        record_shapes=True,
 | 
			
		||||
        with_stack=True
 | 
			
		||||
        ) as prof:
 | 
			
		||||
 | 
			
		||||
        for i in range(10):
 | 
			
		||||
            start_time = time.time()
 | 
			
		||||
 | 
			
		||||
            # Perform inference
 | 
			
		||||
            with torch.inference_mode():
 | 
			
		||||
                # logits = model(**inputs).logits
 | 
			
		||||
                outputs = model(**inputs)
 | 
			
		||||
                logits = outputs.logits
 | 
			
		||||
 | 
			
		||||
            # Get the predicted class for each input in the batch
 | 
			
		||||
            predicted_class_ids = logits.argmax(dim=1).tolist()
 | 
			
		||||
 | 
			
		||||
            end_time = time.time()
 | 
			
		||||
            elapsed_time = end_time - start_time
 | 
			
		||||
 | 
			
		||||
            # Save the elapsed time in the list
 | 
			
		||||
            elapsed_times.append(elapsed_time)
 | 
			
		||||
 | 
			
		||||
            if(enable_profile):
 | 
			
		||||
                prof.step()
 | 
			
		||||
 | 
			
		||||
            # print(outputs)
 | 
			
		||||
            # print(type(outputs))
 | 
			
		||||
            # print("logits.shape is " + str(logits.shape))
 | 
			
		||||
            # print(logits)
 | 
			
		||||
 | 
			
		||||
            # print(predicted_class_ids)
 | 
			
		||||
 | 
			
		||||
elif engine == 'ov':
 | 
			
		||||
    print("OV inference")
 | 
			
		||||
        # Initialize an empty list to store elapsed times
 | 
			
		||||
    elapsed_times = []
 | 
			
		||||
 | 
			
		||||
    # Loop for batch processing 10 times and calculate the time for every loop
 | 
			
		||||
    for i in range(10):
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
 | 
			
		||||
        outputs = model(**inputs)
 | 
			
		||||
        logits = outputs.logits
 | 
			
		||||
 | 
			
		||||
        # Get the predicted class for each input in the batch
 | 
			
		||||
        predicted_class_ids = logits.argmax(dim=1).tolist()
 | 
			
		||||
 | 
			
		||||
        end_time = time.time()
 | 
			
		||||
        elapsed_time = end_time - start_time
 | 
			
		||||
 | 
			
		||||
        # Save the elapsed time in the list
 | 
			
		||||
        elapsed_times.append(elapsed_time)
 | 
			
		||||
 | 
			
		||||
        # print(outputs)
 | 
			
		||||
        # print(type(outputs))
 | 
			
		||||
        # print("logits.shape is " + str(logits.shape))
 | 
			
		||||
        # print(logits)
 | 
			
		||||
 | 
			
		||||
        # print(predictions)
 | 
			
		||||
        #print(predicted_class_ids)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Skip the first two values and calculate the average of the remaining elapsed times
 | 
			
		||||
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
 | 
			
		||||
classfication_per_second = batch_size/average_elapsed_time
 | 
			
		||||
print(f"Average time taken (excluding the first two loops): {average_elapsed_time:.4f} seconds, Classification per seconds is {classfication_per_second:.4f}")
 | 
			
		||||
		Loading…
	
		Reference in a new issue