torch 2.3 inference docker (#12517)
* torch 2.3 inference docker * Update README.md * add convert code * rename image * remove 2.1 and add graph example * Update README.md
This commit is contained in:
parent
b747f3f6b8
commit
fa261b8af1
4 changed files with 352 additions and 6 deletions
|
|
@ -1,4 +1,4 @@
|
||||||
FROM intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04
|
FROM intel/oneapi:2024.2.1-0-devel-ubuntu22.04
|
||||||
|
|
||||||
ARG http_proxy
|
ARG http_proxy
|
||||||
ARG https_proxy
|
ARG https_proxy
|
||||||
|
|
@ -29,6 +29,19 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
|
||||||
env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
env DEBIAN_FRONTEND=noninteractive apt-get update && \
|
||||||
# add-apt-repository requires gnupg, gpg-agent, software-properties-common
|
# add-apt-repository requires gnupg, gpg-agent, software-properties-common
|
||||||
apt-get install -y --no-install-recommends gnupg gpg-agent software-properties-common && \
|
apt-get install -y --no-install-recommends gnupg gpg-agent software-properties-common && \
|
||||||
|
export PRE_DIR=$(pwd) && \
|
||||||
|
# Install Compute Runtime
|
||||||
|
mkdir -p /tmp/neo && \
|
||||||
|
cd /tmp/neo && \
|
||||||
|
wget https://github.com/oneapi-src/level-zero/releases/download/v1.18.5/level-zero_1.18.5+u22.04_amd64.deb && \
|
||||||
|
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17791.9/intel-igc-core_1.0.17791.9_amd64.deb && \
|
||||||
|
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17791.9/intel-igc-opencl_1.0.17791.9_amd64.deb && \
|
||||||
|
wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/intel-level-zero-gpu_1.6.31294.12_amd64.deb && \
|
||||||
|
wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/intel-opencl-icd_24.39.31294.12_amd64.deb && \
|
||||||
|
wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/libigdgmm12_22.5.2_amd64.deb && \
|
||||||
|
dpkg -i *.deb && \
|
||||||
|
rm -rf /tmp/neo && \
|
||||||
|
cd $PRE_DIR && \
|
||||||
# Add Python 3.11 PPA repository
|
# Add Python 3.11 PPA repository
|
||||||
add-apt-repository ppa:deadsnakes/ppa -y && \
|
add-apt-repository ppa:deadsnakes/ppa -y && \
|
||||||
apt-get install -y --no-install-recommends python3.11 git curl wget && \
|
apt-get install -y --no-install-recommends python3.11 git curl wget && \
|
||||||
|
|
@ -41,13 +54,12 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
|
||||||
python3 get-pip.py && \
|
python3 get-pip.py && \
|
||||||
rm get-pip.py && \
|
rm get-pip.py && \
|
||||||
pip install --upgrade requests argparse urllib3 && \
|
pip install --upgrade requests argparse urllib3 && \
|
||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
|
pip install --pre --upgrade ipex-llm[xpu_arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
|
||||||
|
pip install --pre pytorch-triton-xpu==3.0.0+1b2f15840e --index-url https://download.pytorch.org/whl/nightly/xpu && \
|
||||||
# Fix Trivy CVE Issues
|
# Fix Trivy CVE Issues
|
||||||
pip install transformers==4.36.2 && \
|
|
||||||
pip install transformers_stream_generator einops tiktoken && \
|
pip install transformers_stream_generator einops tiktoken && \
|
||||||
# Install opencl-related repos
|
# Install opencl-related repos
|
||||||
apt-get update && \
|
apt-get update && \
|
||||||
apt-get install -y --no-install-recommends intel-opencl-icd=23.35.27191.42-775~22.04 intel-level-zero-gpu=1.3.27191.42-775~22.04 level-zero=1.14.0-744~22.04 && \
|
|
||||||
# Install related libary of chat.py
|
# Install related libary of chat.py
|
||||||
pip install --upgrade colorama && \
|
pip install --upgrade colorama && \
|
||||||
# Download all-in-one benchmark and examples
|
# Download all-in-one benchmark and examples
|
||||||
|
|
@ -71,7 +83,7 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
|
||||||
# Download Deepspeed-AutoTP
|
# Download Deepspeed-AutoTP
|
||||||
cp -r ./ipex-llm/python/llm/example/GPU/Deepspeed-AutoTP/ ./Deepspeed-AutoTP && \
|
cp -r ./ipex-llm/python/llm/example/GPU/Deepspeed-AutoTP/ ./Deepspeed-AutoTP && \
|
||||||
# Install related library of Deepspeed-AutoTP
|
# Install related library of Deepspeed-AutoTP
|
||||||
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
|
pip install oneccl_bind_pt==2.3.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
|
||||||
pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5 && \
|
pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5 && \
|
||||||
pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b && \
|
pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b && \
|
||||||
pip install mpi4py && \
|
pip install mpi4py && \
|
||||||
|
|
@ -82,3 +94,4 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
|
||||||
|
|
||||||
|
|
||||||
WORKDIR /llm/
|
WORKDIR /llm/
|
||||||
|
ENV BIGDL_CHECK_DUPLICATE_IMPORT=0
|
||||||
|
|
|
||||||
48
python/llm/example/GPU/GraphMode/README.md
Normal file
48
python/llm/example/GPU/GraphMode/README.md
Normal file
|
|
@ -0,0 +1,48 @@
|
||||||
|
# Torch Graph Mode
|
||||||
|
|
||||||
|
Here, we provide how to run [torch graph mode](https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/) on Intel Arc™ A-Series Graphics with ipex-llm, and [gpt2-medium](https://huggingface.co/openai-community/gpt2-medium) for classification task is used as illustration:
|
||||||
|
|
||||||
|
### 1. Install
|
||||||
|
```bash
|
||||||
|
conda create -n ipex-llm python=3.11
|
||||||
|
conda activate ipex-llm
|
||||||
|
pip install --pre --upgrade ipex-llm[xpu_arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
||||||
|
pip install --pre pytorch-triton-xpu==3.0.0+1b2f15840e --index-url https://download.pytorch.org/whl/nightly/xpu
|
||||||
|
conda install -c conda-forge libstdcxx-ng
|
||||||
|
unset OCL_ICD_VENDORS
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Skip this step if you are running on Windows.
|
||||||
|
|
||||||
|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Run
|
||||||
|
|
||||||
|
Convert text-generating GPT2-Medium to the classification:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# The convert step needs to access the internet
|
||||||
|
export http_proxy=http://your_proxy_url
|
||||||
|
export https_proxy=http://your_proxy_url
|
||||||
|
|
||||||
|
# This will yield gpt2-medium-classification under /llm/models in the container
|
||||||
|
python convert-model-textgen-to-classfication.py --model-path MODEL_PATH
|
||||||
|
```
|
||||||
|
|
||||||
|
This will yield a mode directory ends with '-classification' neart your input model path.
|
||||||
|
|
||||||
|
Benchmark GPT2-Medium's performance with IPEX-LLM engine:
|
||||||
|
|
||||||
|
``` sbash
|
||||||
|
ipexrun xpu gpt2-graph-mode-benchmark.py --device xpu --engine ipex-llm --batch 16 --model-path MODEL_PATH
|
||||||
|
|
||||||
|
# You will see the key output like:
|
||||||
|
# Average time taken (excluding the first two loops): xxxx seconds, Classification per seconds is xxxx
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,57 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/convert-model-textgen-to-classfication.py
|
||||||
|
#
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, AutoModelForCausalLM
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Process some integers.')
|
||||||
|
parser.add_argument('--model_path', type=str, help='an string for the device')
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.model_path
|
||||||
|
|
||||||
|
dtype=torch.bfloat16
|
||||||
|
num_labels = 5
|
||||||
|
|
||||||
|
model_name=model_path
|
||||||
|
|
||||||
|
save_directory = model_name + "-classification"
|
||||||
|
|
||||||
|
# Initialize the tokenizer
|
||||||
|
# Need padding from the left and padding to 1024
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
# tokenizer.padding_side = "left"
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
tokenizer.save_pretrained(save_directory)
|
||||||
|
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id,)
|
||||||
|
config = AutoConfig.from_pretrained(model_name)
|
||||||
|
print("text gen model")
|
||||||
|
print(model)
|
||||||
|
print(config)
|
||||||
|
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, torch_dtype=dtype)
|
||||||
|
save_directory = model_name + "-classification"
|
||||||
|
model.save_pretrained(save_directory)
|
||||||
|
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(save_directory, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id)
|
||||||
|
config = AutoConfig.from_pretrained(save_directory)
|
||||||
|
print("text classification model")
|
||||||
|
print(model)
|
||||||
|
print(config)
|
||||||
228
python/llm/example/GPU/GraphMode/gpt2-graph-mode-benchmark.py
Normal file
228
python/llm/example/GPU/GraphMode/gpt2-graph-mode-benchmark.py
Normal file
|
|
@ -0,0 +1,228 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/gpt2-benchmark-for-sangfor.py
|
||||||
|
#
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
|
||||||
|
from torch.profiler import profile, record_function, ProfilerActivity, schedule
|
||||||
|
|
||||||
|
|
||||||
|
# Get the batch size and device
|
||||||
|
parser = argparse.ArgumentParser(description='Process some integers.')
|
||||||
|
parser.add_argument('--batch_size', type=int, default=1, help='an integer for the batch size')
|
||||||
|
parser.add_argument('--device', type=str, default='cpu', help='an string for the device')
|
||||||
|
parser.add_argument('--profile', type=bool, default=False, help='enable protch profiler for CPU/XPU')
|
||||||
|
parser.add_argument('--engine', type=str, default='ipex-llm', help='an string for the device')
|
||||||
|
parser.add_argument('--model_path', type=str, help='an string for the device')
|
||||||
|
args = parser.parse_args()
|
||||||
|
enable_profile=args.profile
|
||||||
|
batch_size = args.batch_size
|
||||||
|
device = args.device
|
||||||
|
engine = args.engine
|
||||||
|
model_path = args.model_path
|
||||||
|
print(f"The batch size is: {batch_size}, device is {device}")
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################################
|
||||||
|
# PyTorch Profiling with IPEX
|
||||||
|
# export IPEX_ZE_TRACING=1
|
||||||
|
# export ZE_ENABLE_TRACING_LAYER=1
|
||||||
|
import contextlib
|
||||||
|
def profiler_setup(profiling=False, *args, **kwargs):
|
||||||
|
if profiling:
|
||||||
|
return torch.profiler.profile(*args, **kwargs)
|
||||||
|
else:
|
||||||
|
return contextlib.nullcontext()
|
||||||
|
|
||||||
|
my_schedule = schedule(
|
||||||
|
skip_first=6,
|
||||||
|
wait=1,
|
||||||
|
warmup=1,
|
||||||
|
active=1
|
||||||
|
)
|
||||||
|
|
||||||
|
# also define a handler for outputing results
|
||||||
|
def trace_handler(p):
|
||||||
|
if(device == 'xpu'):
|
||||||
|
print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
|
||||||
|
print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
|
||||||
|
# p.export_chrome_trace("./trace_" + str(p.step_num) + ".json")
|
||||||
|
#######################################################################################
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
|
||||||
|
num_labels = 5
|
||||||
|
|
||||||
|
model_name = model_path
|
||||||
|
|
||||||
|
model_name = model_name + "-classification"
|
||||||
|
model_name_ov = model_name + "-ov"
|
||||||
|
model_name_ov = model_name_ov + "-fp16"
|
||||||
|
|
||||||
|
if (engine == 'ipex') :
|
||||||
|
import torch
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
# Need padding from the left and padding to 1024
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
|
||||||
|
pad_token_id=tokenizer.eos_token_id,
|
||||||
|
low_cpu_mem_usage=True
|
||||||
|
).eval().to(device)
|
||||||
|
elif (engine == 'ipex-llm'):
|
||||||
|
from ipex_llm.transformers import AutoModelForSequenceClassification
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(model_name,
|
||||||
|
torch_dtype=dtype,
|
||||||
|
load_in_low_bit="fp16",
|
||||||
|
pad_token_id=tokenizer.eos_token_id,
|
||||||
|
low_cpu_mem_usage=True).to(device)
|
||||||
|
model = torch.compile(model, backend='inductor')
|
||||||
|
print(model)
|
||||||
|
else:
|
||||||
|
from optimum.intel import OVModelForSequenceClassification
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name_ov, trust_remote_code=True)
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Intel(R) Extension for PyTorch*
|
||||||
|
if engine == 'ipex':
|
||||||
|
if device == 'cpu':
|
||||||
|
# model = ipex.llm.optimize(model, dtype=dtype, inplace=True, deployment_mode=True)
|
||||||
|
# ############## TorchDynamo ###############
|
||||||
|
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
|
||||||
|
model = torch.compile(model, backend='ipex')
|
||||||
|
# ##########################################
|
||||||
|
else: # Intel XPU
|
||||||
|
#model = ipex.llm.optimize(model, dtype=dtype, device="xpu", inplace=True)
|
||||||
|
model = ipex.optimize(model, dtype=dtype, inplace=True)
|
||||||
|
|
||||||
|
model=torch.compile(model, backend="inductor")
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# # #######calulate the total num of parameters########
|
||||||
|
# def model_size(model):
|
||||||
|
# return sum(t.numel() for t in model.parameters())
|
||||||
|
# print(f"GPT2 size: {model_size(model)/1000**2:.1f}M parameters")
|
||||||
|
# # # #######print model information ###################
|
||||||
|
# print(model)
|
||||||
|
|
||||||
|
# ########Enable the BetterTransformer ###################
|
||||||
|
# only Better Transformer only support GPT2, not support Qwen2
|
||||||
|
# model = BetterTransformer.transform(model)
|
||||||
|
#elif engine == 'ipex-llm':
|
||||||
|
# model = ipex.optimize(model, dtype=dtype, inplace=True)
|
||||||
|
# model=torch.compile(model) #backend="inductor")
|
||||||
|
elif engine == 'ov':
|
||||||
|
print("OV inference")
|
||||||
|
|
||||||
|
|
||||||
|
prompt = ["this is the first prompt"]
|
||||||
|
prompts = prompt * batch_size
|
||||||
|
#print(prompts)
|
||||||
|
|
||||||
|
# Tokenize the batch of prompts
|
||||||
|
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
|
||||||
|
# print(inputs)
|
||||||
|
|
||||||
|
if engine == 'ipex' or engine == 'ipex-llm':
|
||||||
|
#ipex need move the inputs to device, but OV doesn't need
|
||||||
|
inputs.to(device)
|
||||||
|
|
||||||
|
# Initialize an empty list to store elapsed times
|
||||||
|
elapsed_times = []
|
||||||
|
|
||||||
|
# Loop for batch processing 10 times and calculate the time for every loop
|
||||||
|
with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
|
||||||
|
schedule=my_schedule,
|
||||||
|
on_trace_ready=trace_handler,
|
||||||
|
# on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/gpt2'),
|
||||||
|
record_shapes=True,
|
||||||
|
with_stack=True
|
||||||
|
) as prof:
|
||||||
|
|
||||||
|
for i in range(10):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# Perform inference
|
||||||
|
with torch.inference_mode():
|
||||||
|
# logits = model(**inputs).logits
|
||||||
|
outputs = model(**inputs)
|
||||||
|
logits = outputs.logits
|
||||||
|
|
||||||
|
# Get the predicted class for each input in the batch
|
||||||
|
predicted_class_ids = logits.argmax(dim=1).tolist()
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
elapsed_time = end_time - start_time
|
||||||
|
|
||||||
|
# Save the elapsed time in the list
|
||||||
|
elapsed_times.append(elapsed_time)
|
||||||
|
|
||||||
|
if(enable_profile):
|
||||||
|
prof.step()
|
||||||
|
|
||||||
|
# print(outputs)
|
||||||
|
# print(type(outputs))
|
||||||
|
# print("logits.shape is " + str(logits.shape))
|
||||||
|
# print(logits)
|
||||||
|
|
||||||
|
# print(predicted_class_ids)
|
||||||
|
|
||||||
|
elif engine == 'ov':
|
||||||
|
print("OV inference")
|
||||||
|
# Initialize an empty list to store elapsed times
|
||||||
|
elapsed_times = []
|
||||||
|
|
||||||
|
# Loop for batch processing 10 times and calculate the time for every loop
|
||||||
|
for i in range(10):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
outputs = model(**inputs)
|
||||||
|
logits = outputs.logits
|
||||||
|
|
||||||
|
# Get the predicted class for each input in the batch
|
||||||
|
predicted_class_ids = logits.argmax(dim=1).tolist()
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
elapsed_time = end_time - start_time
|
||||||
|
|
||||||
|
# Save the elapsed time in the list
|
||||||
|
elapsed_times.append(elapsed_time)
|
||||||
|
|
||||||
|
# print(outputs)
|
||||||
|
# print(type(outputs))
|
||||||
|
# print("logits.shape is " + str(logits.shape))
|
||||||
|
# print(logits)
|
||||||
|
|
||||||
|
# print(predictions)
|
||||||
|
#print(predicted_class_ids)
|
||||||
|
|
||||||
|
|
||||||
|
# Skip the first two values and calculate the average of the remaining elapsed times
|
||||||
|
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
|
||||||
|
classfication_per_second = batch_size/average_elapsed_time
|
||||||
|
print(f"Average time taken (excluding the first two loops): {average_elapsed_time:.4f} seconds, Classification per seconds is {classfication_per_second:.4f}")
|
||||||
Loading…
Reference in a new issue