torch 2.3 inference docker (#12517)
* torch 2.3 inference docker * Update README.md * add convert code * rename image * remove 2.1 and add graph example * Update README.md
This commit is contained in:
		
							parent
							
								
									b747f3f6b8
								
							
						
					
					
						commit
						fa261b8af1
					
				
					 4 changed files with 352 additions and 6 deletions
				
			
		| 
						 | 
					@ -1,4 +1,4 @@
 | 
				
			||||||
FROM intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04
 | 
					FROM intel/oneapi:2024.2.1-0-devel-ubuntu22.04
 | 
				
			||||||
 | 
					
 | 
				
			||||||
ARG http_proxy
 | 
					ARG http_proxy
 | 
				
			||||||
ARG https_proxy
 | 
					ARG https_proxy
 | 
				
			||||||
| 
						 | 
					@ -29,6 +29,19 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
				
			||||||
    env DEBIAN_FRONTEND=noninteractive apt-get update && \
 | 
					    env DEBIAN_FRONTEND=noninteractive apt-get update && \
 | 
				
			||||||
    # add-apt-repository requires gnupg, gpg-agent, software-properties-common
 | 
					    # add-apt-repository requires gnupg, gpg-agent, software-properties-common
 | 
				
			||||||
    apt-get install -y --no-install-recommends gnupg gpg-agent software-properties-common && \
 | 
					    apt-get install -y --no-install-recommends gnupg gpg-agent software-properties-common && \
 | 
				
			||||||
 | 
					    export PRE_DIR=$(pwd) && \
 | 
				
			||||||
 | 
					    # Install Compute Runtime
 | 
				
			||||||
 | 
					    mkdir -p /tmp/neo && \
 | 
				
			||||||
 | 
					    cd /tmp/neo && \
 | 
				
			||||||
 | 
					    wget https://github.com/oneapi-src/level-zero/releases/download/v1.18.5/level-zero_1.18.5+u22.04_amd64.deb && \
 | 
				
			||||||
 | 
					    wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17791.9/intel-igc-core_1.0.17791.9_amd64.deb && \
 | 
				
			||||||
 | 
					    wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.17791.9/intel-igc-opencl_1.0.17791.9_amd64.deb && \
 | 
				
			||||||
 | 
					    wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/intel-level-zero-gpu_1.6.31294.12_amd64.deb && \
 | 
				
			||||||
 | 
					    wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/intel-opencl-icd_24.39.31294.12_amd64.deb && \
 | 
				
			||||||
 | 
					    wget https://github.com/intel/compute-runtime/releases/download/24.39.31294.12/libigdgmm12_22.5.2_amd64.deb && \
 | 
				
			||||||
 | 
					    dpkg -i *.deb && \
 | 
				
			||||||
 | 
					    rm -rf /tmp/neo && \
 | 
				
			||||||
 | 
					    cd $PRE_DIR && \
 | 
				
			||||||
    # Add Python 3.11 PPA repository
 | 
					    # Add Python 3.11 PPA repository
 | 
				
			||||||
    add-apt-repository ppa:deadsnakes/ppa -y && \
 | 
					    add-apt-repository ppa:deadsnakes/ppa -y && \
 | 
				
			||||||
    apt-get install -y --no-install-recommends python3.11 git curl wget && \
 | 
					    apt-get install -y --no-install-recommends python3.11 git curl wget && \
 | 
				
			||||||
| 
						 | 
					@ -41,13 +54,12 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
				
			||||||
    python3 get-pip.py && \
 | 
					    python3 get-pip.py && \
 | 
				
			||||||
    rm get-pip.py && \
 | 
					    rm get-pip.py && \
 | 
				
			||||||
    pip install --upgrade requests argparse urllib3 && \
 | 
					    pip install --upgrade requests argparse urllib3 && \
 | 
				
			||||||
    pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
					    pip install --pre --upgrade ipex-llm[xpu_arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
				
			||||||
 | 
					    pip install --pre pytorch-triton-xpu==3.0.0+1b2f15840e --index-url https://download.pytorch.org/whl/nightly/xpu && \
 | 
				
			||||||
    # Fix Trivy CVE Issues
 | 
					    # Fix Trivy CVE Issues
 | 
				
			||||||
    pip install transformers==4.36.2 && \
 | 
					 | 
				
			||||||
    pip install transformers_stream_generator einops tiktoken && \
 | 
					    pip install transformers_stream_generator einops tiktoken && \
 | 
				
			||||||
    # Install opencl-related repos
 | 
					    # Install opencl-related repos
 | 
				
			||||||
    apt-get update && \
 | 
					    apt-get update && \
 | 
				
			||||||
    apt-get install -y --no-install-recommends intel-opencl-icd=23.35.27191.42-775~22.04 intel-level-zero-gpu=1.3.27191.42-775~22.04 level-zero=1.14.0-744~22.04 && \
 | 
					 | 
				
			||||||
    # Install related libary of chat.py
 | 
					    # Install related libary of chat.py
 | 
				
			||||||
    pip install --upgrade colorama && \
 | 
					    pip install --upgrade colorama && \
 | 
				
			||||||
    # Download all-in-one benchmark and examples
 | 
					    # Download all-in-one benchmark and examples
 | 
				
			||||||
| 
						 | 
					@ -71,7 +83,7 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
				
			||||||
    # Download Deepspeed-AutoTP
 | 
					    # Download Deepspeed-AutoTP
 | 
				
			||||||
    cp -r ./ipex-llm/python/llm/example/GPU/Deepspeed-AutoTP/ ./Deepspeed-AutoTP && \
 | 
					    cp -r ./ipex-llm/python/llm/example/GPU/Deepspeed-AutoTP/ ./Deepspeed-AutoTP && \
 | 
				
			||||||
    # Install related library of Deepspeed-AutoTP
 | 
					    # Install related library of Deepspeed-AutoTP
 | 
				
			||||||
    pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
					    pip install oneccl_bind_pt==2.3.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ && \
 | 
				
			||||||
    pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5 && \
 | 
					    pip install git+https://github.com/microsoft/DeepSpeed.git@ed8aed5 && \
 | 
				
			||||||
    pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b && \
 | 
					    pip install git+https://github.com/intel/intel-extension-for-deepspeed.git@0eb734b && \
 | 
				
			||||||
    pip install mpi4py && \
 | 
					    pip install mpi4py && \
 | 
				
			||||||
| 
						 | 
					@ -82,3 +94,4 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
WORKDIR /llm/
 | 
					WORKDIR /llm/
 | 
				
			||||||
 | 
					ENV BIGDL_CHECK_DUPLICATE_IMPORT=0
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										48
									
								
								python/llm/example/GPU/GraphMode/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										48
									
								
								python/llm/example/GPU/GraphMode/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,48 @@
 | 
				
			||||||
 | 
					# Torch Graph Mode
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Here, we provide how to run [torch graph mode](https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/) on Intel Arc™ A-Series Graphics with ipex-llm, and [gpt2-medium](https://huggingface.co/openai-community/gpt2-medium) for classification task is used as illustration:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n ipex-llm python=3.11
 | 
				
			||||||
 | 
					conda activate ipex-llm
 | 
				
			||||||
 | 
					pip install --pre --upgrade ipex-llm[xpu_arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
 | 
				
			||||||
 | 
					pip install --pre pytorch-triton-xpu==3.0.0+1b2f15840e --index-url https://download.pytorch.org/whl/nightly/xpu
 | 
				
			||||||
 | 
					conda install -c conda-forge libstdcxx-ng
 | 
				
			||||||
 | 
					unset OCL_ICD_VENDORS
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!NOTE]
 | 
				
			||||||
 | 
					> Skip this step if you are running on Windows.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Run
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Convert text-generating GPT2-Medium to the classification:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   ```bash
 | 
				
			||||||
 | 
					   # The convert step needs to access the internet
 | 
				
			||||||
 | 
					   export http_proxy=http://your_proxy_url
 | 
				
			||||||
 | 
					   export https_proxy=http://your_proxy_url
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   # This will yield gpt2-medium-classification under /llm/models in the container
 | 
				
			||||||
 | 
					   python convert-model-textgen-to-classfication.py --model-path MODEL_PATH
 | 
				
			||||||
 | 
					   ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This will yield a mode directory ends with '-classification' neart your input model path.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Benchmark GPT2-Medium's performance with IPEX-LLM engine:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   ``` sbash
 | 
				
			||||||
 | 
					   ipexrun xpu gpt2-graph-mode-benchmark.py --device xpu --engine ipex-llm --batch 16 --model-path MODEL_PATH
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   # You will see the key output like:
 | 
				
			||||||
 | 
					   # Average time taken (excluding the first two loops): xxxx seconds, Classification per seconds is xxxx
 | 
				
			||||||
 | 
					   ```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,57 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/convert-model-textgen-to-classfication.py
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, AutoModelForCausalLM
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					parser = argparse.ArgumentParser(description='Process some integers.')
 | 
				
			||||||
 | 
					parser.add_argument('--model_path', type=str, help='an string for the device')
 | 
				
			||||||
 | 
					args = parser.parse_args()
 | 
				
			||||||
 | 
					model_path = args.model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dtype=torch.bfloat16
 | 
				
			||||||
 | 
					num_labels = 5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model_name=model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					save_directory = model_name + "-classification"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Initialize the tokenizer
 | 
				
			||||||
 | 
					# Need padding from the left and padding to 1024
 | 
				
			||||||
 | 
					tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 | 
				
			||||||
 | 
					# tokenizer.padding_side = "left"
 | 
				
			||||||
 | 
					tokenizer.pad_token = tokenizer.eos_token
 | 
				
			||||||
 | 
					tokenizer.save_pretrained(save_directory)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id,)
 | 
				
			||||||
 | 
					config = AutoConfig.from_pretrained(model_name)
 | 
				
			||||||
 | 
					print("text gen model")
 | 
				
			||||||
 | 
					print(model)
 | 
				
			||||||
 | 
					print(config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, torch_dtype=dtype)
 | 
				
			||||||
 | 
					save_directory = model_name + "-classification"
 | 
				
			||||||
 | 
					model.save_pretrained(save_directory)    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model = AutoModelForSequenceClassification.from_pretrained(save_directory, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id)
 | 
				
			||||||
 | 
					config = AutoConfig.from_pretrained(save_directory)
 | 
				
			||||||
 | 
					print("text classification model")
 | 
				
			||||||
 | 
					print(model)
 | 
				
			||||||
 | 
					print(config)
 | 
				
			||||||
							
								
								
									
										228
									
								
								python/llm/example/GPU/GraphMode/gpt2-graph-mode-benchmark.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										228
									
								
								python/llm/example/GPU/GraphMode/gpt2-graph-mode-benchmark.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,228 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/gpt2-benchmark-for-sangfor.py
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
 | 
				
			||||||
 | 
					from torch.profiler import profile, record_function, ProfilerActivity, schedule
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Get the batch size and device
 | 
				
			||||||
 | 
					parser = argparse.ArgumentParser(description='Process some integers.')
 | 
				
			||||||
 | 
					parser.add_argument('--batch_size', type=int, default=1, help='an integer for the batch size')
 | 
				
			||||||
 | 
					parser.add_argument('--device', type=str, default='cpu', help='an string for the device')
 | 
				
			||||||
 | 
					parser.add_argument('--profile', type=bool, default=False, help='enable protch profiler for CPU/XPU')
 | 
				
			||||||
 | 
					parser.add_argument('--engine', type=str, default='ipex-llm', help='an string for the device')
 | 
				
			||||||
 | 
					parser.add_argument('--model_path', type=str, help='an string for the device')
 | 
				
			||||||
 | 
					args = parser.parse_args()
 | 
				
			||||||
 | 
					enable_profile=args.profile
 | 
				
			||||||
 | 
					batch_size = args.batch_size
 | 
				
			||||||
 | 
					device = args.device
 | 
				
			||||||
 | 
					engine = args.engine
 | 
				
			||||||
 | 
					model_path = args.model_path
 | 
				
			||||||
 | 
					print(f"The batch size is: {batch_size}, device is {device}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					######################################################################################
 | 
				
			||||||
 | 
					# PyTorch Profiling with IPEX
 | 
				
			||||||
 | 
					# export IPEX_ZE_TRACING=1
 | 
				
			||||||
 | 
					# export ZE_ENABLE_TRACING_LAYER=1
 | 
				
			||||||
 | 
					import contextlib
 | 
				
			||||||
 | 
					def profiler_setup(profiling=False, *args, **kwargs):
 | 
				
			||||||
 | 
					    if profiling:
 | 
				
			||||||
 | 
					        return torch.profiler.profile(*args, **kwargs)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        return contextlib.nullcontext()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					my_schedule = schedule(
 | 
				
			||||||
 | 
					    skip_first=6,
 | 
				
			||||||
 | 
					    wait=1,
 | 
				
			||||||
 | 
					    warmup=1,
 | 
				
			||||||
 | 
					    active=1
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# also define a handler for outputing results
 | 
				
			||||||
 | 
					def trace_handler(p):
 | 
				
			||||||
 | 
					    if(device == 'xpu'):
 | 
				
			||||||
 | 
					        print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
 | 
				
			||||||
 | 
					    print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
 | 
				
			||||||
 | 
					    # p.export_chrome_trace("./trace_" + str(p.step_num) + ".json")
 | 
				
			||||||
 | 
					#######################################################################################
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dtype = torch.bfloat16 if device == 'cpu' else torch.float16
 | 
				
			||||||
 | 
					num_labels = 5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model_name = model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model_name = model_name + "-classification"
 | 
				
			||||||
 | 
					model_name_ov = model_name + "-ov"
 | 
				
			||||||
 | 
					model_name_ov = model_name_ov + "-fp16"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if (engine == 'ipex') :
 | 
				
			||||||
 | 
					    import torch
 | 
				
			||||||
 | 
					    import intel_extension_for_pytorch as ipex
 | 
				
			||||||
 | 
					    # Need padding from the left and padding to 1024
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 | 
				
			||||||
 | 
					    tokenizer.padding_side = "left"
 | 
				
			||||||
 | 
					    tokenizer.pad_token = tokenizer.eos_token
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
 | 
				
			||||||
 | 
					                                                               pad_token_id=tokenizer.eos_token_id,
 | 
				
			||||||
 | 
					                                                               low_cpu_mem_usage=True
 | 
				
			||||||
 | 
					                                                               ).eval().to(device)
 | 
				
			||||||
 | 
					elif (engine == 'ipex-llm'):
 | 
				
			||||||
 | 
					    from ipex_llm.transformers import AutoModelForSequenceClassification
 | 
				
			||||||
 | 
					    from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
 | 
				
			||||||
 | 
					    tokenizer.padding_side = "left"
 | 
				
			||||||
 | 
					    tokenizer.pad_token = tokenizer.eos_token
 | 
				
			||||||
 | 
					    model = AutoModelForSequenceClassification.from_pretrained(model_name,
 | 
				
			||||||
 | 
					                                                               torch_dtype=dtype,
 | 
				
			||||||
 | 
					                                                               load_in_low_bit="fp16",
 | 
				
			||||||
 | 
					                                                               pad_token_id=tokenizer.eos_token_id,
 | 
				
			||||||
 | 
					                                                               low_cpu_mem_usage=True).to(device)
 | 
				
			||||||
 | 
					    model = torch.compile(model, backend='inductor')
 | 
				
			||||||
 | 
					    print(model)
 | 
				
			||||||
 | 
					else:
 | 
				
			||||||
 | 
					    from optimum.intel import OVModelForSequenceClassification
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_name_ov, trust_remote_code=True)
 | 
				
			||||||
 | 
					    tokenizer.padding_side = "left"
 | 
				
			||||||
 | 
					    tokenizer.pad_token = tokenizer.eos_token
 | 
				
			||||||
 | 
					    model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Intel(R) Extension for PyTorch*
 | 
				
			||||||
 | 
					if engine == 'ipex':
 | 
				
			||||||
 | 
					    if device == 'cpu':
 | 
				
			||||||
 | 
					        # model = ipex.llm.optimize(model, dtype=dtype, inplace=True, deployment_mode=True)
 | 
				
			||||||
 | 
					        # ############## TorchDynamo ###############
 | 
				
			||||||
 | 
					        model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
 | 
				
			||||||
 | 
					        model = torch.compile(model, backend='ipex')
 | 
				
			||||||
 | 
					        # ##########################################
 | 
				
			||||||
 | 
					    else:    # Intel XPU
 | 
				
			||||||
 | 
					        #model = ipex.llm.optimize(model, dtype=dtype, device="xpu", inplace=True)
 | 
				
			||||||
 | 
					        model = ipex.optimize(model, dtype=dtype, inplace=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model=torch.compile(model, backend="inductor")
 | 
				
			||||||
 | 
					    print(model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # # #######calulate the total num of parameters########
 | 
				
			||||||
 | 
					    # def model_size(model):
 | 
				
			||||||
 | 
					    #     return sum(t.numel() for t in model.parameters())
 | 
				
			||||||
 | 
					    # print(f"GPT2 size: {model_size(model)/1000**2:.1f}M parameters")
 | 
				
			||||||
 | 
					    # # # #######print model information  ###################
 | 
				
			||||||
 | 
					    # print(model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # ########Enable the BetterTransformer  ###################
 | 
				
			||||||
 | 
					    # only Better Transformer only support GPT2, not support Qwen2
 | 
				
			||||||
 | 
					    # model = BetterTransformer.transform(model)
 | 
				
			||||||
 | 
					#elif engine == 'ipex-llm':
 | 
				
			||||||
 | 
					#    model = ipex.optimize(model, dtype=dtype, inplace=True)
 | 
				
			||||||
 | 
					#    model=torch.compile(model) #backend="inductor")
 | 
				
			||||||
 | 
					elif engine == 'ov':
 | 
				
			||||||
 | 
					    print("OV inference")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					prompt = ["this is the first prompt"]
 | 
				
			||||||
 | 
					prompts = prompt * batch_size
 | 
				
			||||||
 | 
					#print(prompts)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Tokenize the batch of prompts
 | 
				
			||||||
 | 
					inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
 | 
				
			||||||
 | 
					# print(inputs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if engine == 'ipex' or engine == 'ipex-llm':
 | 
				
			||||||
 | 
					    #ipex need move the inputs to device, but OV doesn't need
 | 
				
			||||||
 | 
					    inputs.to(device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Initialize an empty list to store elapsed times
 | 
				
			||||||
 | 
					    elapsed_times = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Loop for batch processing 10 times and calculate the time for every loop
 | 
				
			||||||
 | 
					    with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
 | 
				
			||||||
 | 
					        schedule=my_schedule,
 | 
				
			||||||
 | 
					        on_trace_ready=trace_handler,
 | 
				
			||||||
 | 
					        # on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/gpt2'),
 | 
				
			||||||
 | 
					        record_shapes=True,
 | 
				
			||||||
 | 
					        with_stack=True
 | 
				
			||||||
 | 
					        ) as prof:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for i in range(10):
 | 
				
			||||||
 | 
					            start_time = time.time()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # Perform inference
 | 
				
			||||||
 | 
					            with torch.inference_mode():
 | 
				
			||||||
 | 
					                # logits = model(**inputs).logits
 | 
				
			||||||
 | 
					                outputs = model(**inputs)
 | 
				
			||||||
 | 
					                logits = outputs.logits
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # Get the predicted class for each input in the batch
 | 
				
			||||||
 | 
					            predicted_class_ids = logits.argmax(dim=1).tolist()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            end_time = time.time()
 | 
				
			||||||
 | 
					            elapsed_time = end_time - start_time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # Save the elapsed time in the list
 | 
				
			||||||
 | 
					            elapsed_times.append(elapsed_time)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if(enable_profile):
 | 
				
			||||||
 | 
					                prof.step()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # print(outputs)
 | 
				
			||||||
 | 
					            # print(type(outputs))
 | 
				
			||||||
 | 
					            # print("logits.shape is " + str(logits.shape))
 | 
				
			||||||
 | 
					            # print(logits)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # print(predicted_class_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					elif engine == 'ov':
 | 
				
			||||||
 | 
					    print("OV inference")
 | 
				
			||||||
 | 
					        # Initialize an empty list to store elapsed times
 | 
				
			||||||
 | 
					    elapsed_times = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Loop for batch processing 10 times and calculate the time for every loop
 | 
				
			||||||
 | 
					    for i in range(10):
 | 
				
			||||||
 | 
					        start_time = time.time()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        outputs = model(**inputs)
 | 
				
			||||||
 | 
					        logits = outputs.logits
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Get the predicted class for each input in the batch
 | 
				
			||||||
 | 
					        predicted_class_ids = logits.argmax(dim=1).tolist()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        end_time = time.time()
 | 
				
			||||||
 | 
					        elapsed_time = end_time - start_time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Save the elapsed time in the list
 | 
				
			||||||
 | 
					        elapsed_times.append(elapsed_time)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # print(outputs)
 | 
				
			||||||
 | 
					        # print(type(outputs))
 | 
				
			||||||
 | 
					        # print("logits.shape is " + str(logits.shape))
 | 
				
			||||||
 | 
					        # print(logits)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # print(predictions)
 | 
				
			||||||
 | 
					        #print(predicted_class_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Skip the first two values and calculate the average of the remaining elapsed times
 | 
				
			||||||
 | 
					average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
 | 
				
			||||||
 | 
					classfication_per_second = batch_size/average_elapsed_time
 | 
				
			||||||
 | 
					print(f"Average time taken (excluding the first two loops): {average_elapsed_time:.4f} seconds, Classification per seconds is {classfication_per_second:.4f}")
 | 
				
			||||||
		Loading…
	
		Reference in a new issue