Add YARN tutorial to docs (#6242)
* add yarn to docs * modify * meet review * modify style * minor * change # * minor
This commit is contained in:
parent
5e4c269a49
commit
f98a8612c6
2 changed files with 514 additions and 15 deletions
498
docs/readthedocs/source/doc/Orca/Tutorial/yarn.md
Normal file
498
docs/readthedocs/source/doc/Orca/Tutorial/yarn.md
Normal file
|
|
@ -0,0 +1,498 @@
|
|||
# Running BigDL-Orca on Hadoop/YARN Clusters
|
||||
|
||||
This tutorial provides a step-by-step guide on how to run BigDL-Orca programs on Apache Hadoop/YARN clusters, using a [PyTorch Fashin-MNIST program](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/) as a working example.
|
||||
|
||||
## 1. Key Concepts
|
||||
### 1.1 Init_orca_context
|
||||
A BigDL Orca program usually starts with the initialization of OrcaContext. For every BigDL Orca program, you should call `init_orca_context` at the beginning of the program as below:
|
||||
|
||||
```python
|
||||
from bigdl.orca import init_orca_context
|
||||
|
||||
init_orca_context(cluster_mode, cores, memory, num_nodes, driver_cores, driver_memory, extra_python_lib, conf)
|
||||
```
|
||||
|
||||
In `init_orca_context`, you may specify necessary runtime configurations for running the example on YARN, including:
|
||||
* `cluster_mode`: a String that specifies the underlying cluster; valid value includes `"local"`, __`"yarn-client"`__, __`"yarn-cluster"`__, `"k8s-client"`, `"k8s-cluster"`, `"bigdl-submit"`, `"spark-submit"`.
|
||||
* `cores`: an Integer that specifies the number of cores for each executor (default to be `2`).
|
||||
* `memory`: a String that specifies the memory for each executor (default to be `"2g"`).
|
||||
* `num_nodes`: an Integer that specifies the number of executors (default to be `1`).
|
||||
* `driver_cores`: an Integer that specifies the number of cores for the driver node (default to be `4`).
|
||||
* `driver_memory`: a String that specifies the memory for the driver node (default to be `"1g"`).
|
||||
* `extra_python_lib`: a String that specifies the path to extra Python package, one of `.py`, `.zip` or `.egg` files (default to be `None`).
|
||||
* `conf`: a Key-Value format to append extra conf for Spark (default to be `None`).
|
||||
|
||||
__Note__:
|
||||
* All arguments __except__ `cluster_mode` will be ignored when using `bigdl-submit` or `spark-submit` to submit and run Orca programs, in which case you are supposed to specify the configurations via the submit command.
|
||||
|
||||
After the Orca programs finish, you should call `stop_orca_context` at the end of the program to release resources and shutdown the underlying distributed runtime engine (such as Spark or Ray).
|
||||
```python
|
||||
from bigdl.orca import stop_orca_context
|
||||
|
||||
stop_orca_context()
|
||||
```
|
||||
|
||||
For more details, please see [OrcaContext](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca-context.html).
|
||||
|
||||
### 1.2 Yarn-Client & Yarn-Cluster
|
||||
The difference between yarn-client and yarn-cluster is where you run your Spark driver.
|
||||
|
||||
For yarn-client, the Spark driver runs in the client process, and the application master is only used for requesting resources from YARN, while for yarn-cluster the Spark driver runs inside an application master process which is managed by YARN in the cluster.
|
||||
|
||||
For more details, please see [Launching Spark on YARN](https://spark.apache.org/docs/latest/running-on-yarn.html#launching-spark-on-yarn).
|
||||
|
||||
### 1.3 Use Distributed Storage When Running on YARN
|
||||
__Note:__
|
||||
* When you are running programs on YARN, you are recommended to load data from a distributed storage (e.g. HDFS or S3) instead of the local file system.
|
||||
|
||||
The Fashion-MNIST example uses a utility function `get_remote_file_to_local` provided by BigDL to download datasets and create PyTorch Dataloader on each executor.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
from bigdl.orca.data.file import get_remote_file_to_local
|
||||
|
||||
def train_data_creator(config, batch_size):
|
||||
transform = transforms.Compose([transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (0.5,))])
|
||||
|
||||
get_remote_file_to_local(remote_path="hdfs://path/to/dataset", local_path="/tmp/dataset")
|
||||
|
||||
trainset = torchvision.datasets.FashionMNIST(root="/tmp/dataset", train=True,
|
||||
download=False, transform=transform)
|
||||
|
||||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
|
||||
shuffle=True, num_workers=0)
|
||||
|
||||
return trainloader
|
||||
```
|
||||
|
||||
## 2. Prepare Environment
|
||||
Before running the BigDL program on YARN, you need to setup the environment following the steps below:
|
||||
|
||||
### 2.1 Setup JAVA & Hadoop Environment
|
||||
**Setup JAVA Environment**
|
||||
|
||||
You need to download and install JDK in the environment, and properly set the environment variable `JAVA_HOME`, which is required by Spark. JDK8 is highly recommended.
|
||||
|
||||
```bash
|
||||
# For Ubuntu
|
||||
sudo apt-get install openjdk-8-jre
|
||||
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
|
||||
|
||||
# For CentOS
|
||||
su -c "yum install java-1.8.0-openjdk"
|
||||
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.282.b08-1.el7_9.x86_64/jre
|
||||
|
||||
export PATH=$PATH:$JAVA_HOME/bin
|
||||
java -version # Verify the version of JDK.
|
||||
```
|
||||
|
||||
**Setup Hadoop Environment**
|
||||
|
||||
Check the Hadoop setup and configurations of our cluster. Make sure you correctly set the environment variable `HADOOP_CONF_DIR`, which is needed to initialize Spark on YARN:
|
||||
```bash
|
||||
export HADOOP_CONF_DIR=/path/to/hadoop/conf
|
||||
```
|
||||
|
||||
### 2.2 Install Python Libraries
|
||||
**Install Conda**
|
||||
|
||||
You need first to use conda to prepare the Python environment on the __Client Node__ (where you submit applications). You could download and install Conda following [Conda User Guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html) or executing the command as below.
|
||||
```bash
|
||||
# Download Anaconda installation script
|
||||
wget -P /tmp https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
|
||||
|
||||
# Execute the script to install conda
|
||||
bash /tmp/Anaconda3-2020.02-Linux-x86_64.sh
|
||||
|
||||
# Please type this command in your terminal to activate Conda environment
|
||||
source ~/.bashrc
|
||||
```
|
||||
|
||||
**Use Conda to install BigDL and other Python libraries**
|
||||
Create a conda environment, install BigDL and all the needed Python libraries in the created conda environment:
|
||||
``` bash
|
||||
# "env" is conda environment name, you can use any name you like.
|
||||
# Please change Python version to 3.6 if you need a Python 3.6 environment.
|
||||
conda create -n env python=3.7
|
||||
conda activate env
|
||||
```
|
||||
You can install the latest release version of BigDL (built on top of Spark 2.4.6 by default) as follows:
|
||||
```bash
|
||||
pip install bigdl
|
||||
```
|
||||
You can install the latest nightly build of BigDL as follows:
|
||||
```bash
|
||||
pip install --pre --upgrade bigdl
|
||||
```
|
||||
|
||||
__Notes:__
|
||||
* Using Conda to install BigDL will automatically install libraries including `conda-pack`, `pyspark==2.4.6`, and other related dependencies.
|
||||
* You can install BigDL built on top of Spark 3.1.2 as follows:
|
||||
|
||||
```bash
|
||||
# Install the latest release version
|
||||
pip install bigdl-spark3
|
||||
|
||||
# Install the latest nightly build version
|
||||
pip install --pre --upgrade bigdl-spark3
|
||||
```
|
||||
Installing bigdl-spark3 will automatically install `pyspark==3.1.2`.
|
||||
* You also need to install any additional python libraries that your application depends on in this Conda environment.
|
||||
|
||||
Please see more details in [Python User Guide](https://bigdl.readthedocs.io/en/latest/doc/UserGuide/python.html).
|
||||
|
||||
### 2.3 Notes for CDH Users
|
||||
* For CDH users, the environment variable `HADOOP_CONF_DIR` should be `/etc/hadoop/conf` by default.
|
||||
|
||||
* The __Client Node__ (where you submit applications) may have already installed a different version of Spark than the one installed with BigDL. To avoid conflicts, unset all Spark-related environment variables (you may use use `env | grep SPARK` to find all of them):
|
||||
```bash
|
||||
unset SPARK_HOME
|
||||
unset SPARK_VERSION
|
||||
unset ...
|
||||
```
|
||||
|
||||
## 3. Prepare Dataset
|
||||
To run the example on YARN, you should upload the Fashion-MNIST dataset to a distributed storage (such as HDFS or S3).
|
||||
|
||||
First, please download the Fashion-MNIST dataset manually on your __Client Node__ (where you submit the program to YARN).
|
||||
```bash
|
||||
# PyTorch official dataset download link
|
||||
git clone https://github.com/zalandoresearch/fashion-mnist.git
|
||||
|
||||
mv /path/to/fashion-mnist/data/fashion /path/to/local/data/FashionMNIST/raw
|
||||
```
|
||||
Then upload it to a distributed storage.
|
||||
```bash
|
||||
# Upload to HDFS
|
||||
hdfs dfs -put /path/to/local/data/FashionMNIST hdfs://path/to/remote/data
|
||||
```
|
||||
|
||||
## 4. Prepare Custom Modules
|
||||
Spark allows to upload Python files (`.py`), and zipped Python packages (`.zip`) across the cluster by setting `--py-files` option in Spark scripts or `extra_python_lib` in `init_orca_context`.
|
||||
|
||||
The FasionMNIST example needs to import modules from `model.py`.
|
||||
* When using `python` command, please specify `extra_python_lib` in `init_orca_context`.
|
||||
```python
|
||||
from bigdl.orca import init_orca_context, stop_orca_context
|
||||
from model import model_creator, optimizer_creator
|
||||
|
||||
# Please switch the `cluster_mode` to `yarn-cluster` when running on cluster mode.
|
||||
init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
|
||||
driver_cores=2, driver_memory="4g",
|
||||
extra_python_lib="model.py")
|
||||
```
|
||||
|
||||
Please see more details in [Orca Document](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca-context.html#python-dependencies).
|
||||
|
||||
* When using `bigdl-submit` or `spark-submit` script, please specify `--py-files` option in the script.
|
||||
```bash
|
||||
bigdl-submit # or spark-submit
|
||||
--master yarn \
|
||||
--delopy-mode client \
|
||||
--py-files model.py
|
||||
train.py
|
||||
```
|
||||
|
||||
Import custom modules at the beginning of the example:
|
||||
```python
|
||||
from bigdl.orca import init_orca_context, stop_orca_context
|
||||
from model import model_creator, optimizer_creator
|
||||
|
||||
init_orca_context(cluster_mode="bigdl-submit") # or spark-submit
|
||||
```
|
||||
|
||||
Please see more details in [Spark Document](https://spark.apache.org/docs/latest/submitting-applications.html).
|
||||
|
||||
__Note:__
|
||||
* If your program depends on a nested directory of Python files, you are recommended to follow the steps below to use a zipped package instead.
|
||||
1. Compress the directory into a zipped package.
|
||||
```bash
|
||||
zip -q -r FashionMNIST_zipped.zip FashionMNIST
|
||||
```
|
||||
2. Please upload the zipped package (`FashionMNIST_zipped.zip`) to YARN.
|
||||
* When using `python` command, please specify `extra_python_lib` argument in `init_orca_context`.
|
||||
|
||||
* When using `bigdl-submit` or `spark-submit` script, please specify `--py-files` option in the script.
|
||||
3. You can then import the custom modules from the unzipped file in your program as below.
|
||||
```python
|
||||
from FashionMNIST.model import model_creator, optimizer_creator
|
||||
```
|
||||
|
||||
|
||||
## 5. Run Jobs on YARN
|
||||
In the following part, we will illustrate three ways to submit and run BigDL Orca applications on YARN.
|
||||
|
||||
* Use `python` command
|
||||
* Use `bigdl-submit`
|
||||
* Use `spark-submit`
|
||||
|
||||
You can choose one of them based on your preference or cluster settings.
|
||||
|
||||
### 5.1 Use `python` Command
|
||||
This is the easiest and most recommended way to run BigDL on YARN.
|
||||
|
||||
__Note:__
|
||||
* You only need to prepare the environment on the __Client Node__ (where you submit applications), all dependencies would be automatically packaged and distributed to YARN cluster.
|
||||
|
||||
|
||||
#### 5.1.1 Yarn Client
|
||||
Please call `init_orca_context` at the very beginning of each Orca program.
|
||||
```python
|
||||
from bigdl.orca import init_orca_context
|
||||
|
||||
init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
|
||||
driver_cores=2, driver_memory="4g",
|
||||
extra_python_lib="model.py")
|
||||
```
|
||||
Run the example following command below:
|
||||
```bash
|
||||
python train.py --cluster_mode yarn-client --remote_dir hdfs://path/to/remote/data
|
||||
```
|
||||
* `--cluster_mode`: set the cluster_mode in `init_orca_context`.
|
||||
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
|
||||
|
||||
__Note__:
|
||||
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of `extra_python_lib`.
|
||||
|
||||
|
||||
#### 5.1.2 Yarn Cluster
|
||||
Please call `init_orca_context` at the very beginning of each Orca program.
|
||||
```python
|
||||
from bigdl.orca import init_orca_context
|
||||
|
||||
init_orca_context(cluster_mode="yarn-cluster", cores=4, memory="10g", num_nodes=2,
|
||||
driver_cores=2, driver_memory="4g",
|
||||
extra_python_lib="model.py")
|
||||
```
|
||||
Run the example following command below:
|
||||
```bash
|
||||
python train.py --cluster_mode yarn-cluster --remote_dir hdfs://path/to/remote/data
|
||||
```
|
||||
* `--cluster_mode`: set the cluster_mode in `init_orca_context`.
|
||||
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
|
||||
|
||||
__Note__:
|
||||
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of `extra_python_lib`.
|
||||
|
||||
|
||||
#### 5.1.3 Jupyter Notebook
|
||||
You can easily run the example in a Jupyter Notebook.
|
||||
|
||||
```bash
|
||||
# Start a jupyter notebook
|
||||
jupyter notebook --notebook-dir=/path/to/notebook/directory --ip=* --no-browser
|
||||
```
|
||||
You can copy the code of `train.py` to the notebook and run the cells on `yarn-client` mode.
|
||||
```python
|
||||
from bigdl.orca import init_orca_context
|
||||
|
||||
init_orca_context(cluster_mode="yarn-client", cores=4, memory="10g", num_nodes=2,
|
||||
driver_cores=2, driver_memory="4g",
|
||||
extra_python_lib="model.py")
|
||||
```
|
||||
__Note:__
|
||||
* Jupyter Notebook cannot run on `yarn-cluster`, as the driver is not running on the __Client Node__(the notebook page).
|
||||
|
||||
|
||||
### 5.2 Use `bigdl-submit`
|
||||
For users who want to use a script instead of Python command, BigDL provides an easy-to-use `bigdl-submit` script, which could automatically setup configuration and jars files from the current activate Conda environment.
|
||||
|
||||
Please call `init_orca_context` at the very beginning of the program.
|
||||
```python
|
||||
from bigdl.orca import init_orca_context
|
||||
|
||||
init_orca_context(cluster_mode="bigdl-submit")
|
||||
```
|
||||
|
||||
On the __Client Node__ (where you submit applications), before submitting the example:
|
||||
1. Install and activate Conda environment (see __[Section 2.2.1](#221-install-conda)__).
|
||||
2. Use Conda to install BigDL and other Python libraries (see __[Section 2.2.2](#222-use-conda-to-install-bigdl-and-other-python-libraries)__).
|
||||
3. Pack the current activate Conda environment to an archive.
|
||||
```bash
|
||||
conda pack -o environment.tar.gz
|
||||
```
|
||||
|
||||
#### 5.2.1 Yarn Client
|
||||
Submit and run the example on `yarn-client` mode following `bigdl-submit` script below:
|
||||
```bash
|
||||
bigdl-submit \
|
||||
--master yarn \
|
||||
--deploy-mode client \
|
||||
--executor-memory 10g \
|
||||
--driver-memory 10g \
|
||||
--executor-cores 8 \
|
||||
--num-executors 2 \
|
||||
--py-files model.py \
|
||||
--archives /path/to/environment.tar.gz#environment \
|
||||
--conf spark.pyspark.driver.python=/path/to/python \
|
||||
--conf spark.pyspark.python=environment/bin/python \
|
||||
train.py --cluster_mode bigdl-submit --remote_dir hdfs://path/to/remote/data
|
||||
```
|
||||
In the `bigdl-submit` script:
|
||||
* `--master`: the spark master, set it to yarn;
|
||||
* `--deploy-mode`: set it to client when running programs on yarn-client mode;
|
||||
* `--executor-memory`: set the memory for each executor;
|
||||
* `--driver-memory`: set the memory for the driver node;
|
||||
* `--executor-cores`: set the cores number for each executor;
|
||||
* `--num_executors`: set the number of executors;
|
||||
* `--py-files`: upload extra Python dependency files to YARN;
|
||||
* `--archives`: upload the Conda archive to YARN;
|
||||
* `--conf spark.pyspark.driver.python`: set the activate Python location on __Client Node__ as driver's Python environment (find the location by running `which python`);
|
||||
* `--conf spark.pyspark.python`: set the Python location in Conda archive as executors' Python environment;
|
||||
|
||||
__Notes:__
|
||||
* `--cluster_mode`: set the cluster_mode in `init_orca_context`.
|
||||
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
|
||||
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
|
||||
|
||||
|
||||
#### 5.2.2 Yarn Cluster
|
||||
Submit and run the program on `yarn-cluster` mode following `bigdl-submit` script below:
|
||||
```bash
|
||||
bigdl-submit \
|
||||
--master yarn \
|
||||
--deploy-mode cluster \
|
||||
--executor-memory 10g \
|
||||
--driver-memory 10g \
|
||||
--executor-cores 8 \
|
||||
--num-executors 2 \
|
||||
--py-files model.py \
|
||||
--archives /path/to/environment.tar.gz#environment \
|
||||
--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=environment/bin/python \
|
||||
--conf spark.executorEnv.PYSPARK_PYTHON=environment/bin/python \
|
||||
train.py --cluster_mode bigdl-submit --remote_dir hdfs://path/to/remote/data
|
||||
```
|
||||
In the `bigdl-submit` script:
|
||||
* `--master`: the spark master, set it to `yarn`;
|
||||
* `--deploy-mode`: set it to `cluster` when running programs on yarn-cluster mode;
|
||||
* `--executor-memory`: set the memory for each executor;
|
||||
* `--driver-memory`: set the memory for the driver node;
|
||||
* `--executor-cores`: set the cores number for each executor;
|
||||
* `--num_executors`: set the number of executors;
|
||||
* `--py-files`: upload extra Python dependency files to YARN;
|
||||
* `--archives`: upload the Conda archive to YARN;
|
||||
* `--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as Python environment of Application Master process;
|
||||
* `--conf spark.executorEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as Python environment of executors, the Application Master and executor will all use the archive for Python environment;
|
||||
|
||||
__Notes:__
|
||||
* `--cluster_mode`: set the cluster_mode in `init_orca_context`;
|
||||
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
|
||||
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
|
||||
|
||||
|
||||
### 5.3 Use `spark-submit`
|
||||
When the __Client Node__ (where you submit applications) is not able to install BigDL using Conda, please use `spark-submit` script instead.
|
||||
|
||||
Please call `init_orca_context` at the very beginning of the program.
|
||||
```python
|
||||
from bigdl.orca import init_orca_context
|
||||
|
||||
# Please set cluster_mode to "spark-submit".
|
||||
init_orca_context(cluster_mode="spark-submit")
|
||||
```
|
||||
|
||||
Before submitting application, you need:
|
||||
* On the __Development Node__ (which could use Conda):
|
||||
1. Install and activate Conda environment (see __[Section 2.2.1](#221-install-conda)__).
|
||||
2. Use Conda to install BigDL and other Python libraries (see __[Section 2.2.2](#222-use-conda-to-install-bigdl-and-other-python-libraries)__).
|
||||
3. Pack the current activate Conda environment to an archive;
|
||||
```bash
|
||||
conda pack -o environment.tar.gz
|
||||
```
|
||||
4. Send the Conda archive to the __Client Node__;
|
||||
```bash
|
||||
scp /path/to/environment.tar.gz username@client_ip:/path/to/
|
||||
```
|
||||
* On the __Client Node__ (where you submit applications):
|
||||
1. Setup spark environment variables `${SPARK_HOME}` and `${SPARK_VERSION}`.
|
||||
```bash
|
||||
export SPARK_HOME=/path/to/spark # the folder path where you extract the Spark package
|
||||
export SPARK_VERSION="your spark version"
|
||||
```
|
||||
2. Download and unzip a BigDL assembly package from [BigDL Assembly Spark 2.4.6](https://repo1.maven.org/maven2/com/intel/analytics/bigdl/bigdl-assembly-spark_2.4.6/2.1.0/bigdl-assembly-spark_2.4.6-2.1.0-fat-jars.zip) or [BigDL Assembly Spark 3.1.2](https://repo1.maven.org/maven2/com/intel/analytics/bigdl/bigdl-assembly-spark_3.1.2/2.1.0/bigdl-assembly-spark_3.1.2-2.1.0-fat-jars.zip) (according to your Spark version), then setup `${BIGDL_HOME}` and `${BIGDL_VERSION}`.
|
||||
```bash
|
||||
export BIGDL_HOME=/path/to/unzipped_BigDL
|
||||
export BIGDL_VERSION="download BigDL version"
|
||||
```
|
||||
|
||||
#### 5.3.1 Yarn Client
|
||||
Submit and run the program on `yarn-client` mode following `spark-submit` script below:
|
||||
```bash
|
||||
${SPARK_HOME}/bin/spark-submit \
|
||||
--master yarn \
|
||||
--deploy-mode client \
|
||||
--executor-memory 10g \
|
||||
--driver-memory 10g \
|
||||
--executor-cores 8 \
|
||||
--num-executors 2 \
|
||||
--archives /path/to/environment.tar.gz#environment \
|
||||
--properties-file ${BIGDL_HOME}/conf/spark-bigdl.conf \
|
||||
--py-files ${BIGDL_HOME}/python/bigdl-spark_${SPARK_VERSION}-${BIGDL_VERSION}-python-api.zip,model.py \
|
||||
--conf spark.pyspark.driver.python=/path/to/python \
|
||||
--conf spark.pyspark.python=environment/bin/python \
|
||||
--conf spark.driver.extraClassPath=${BIGDL_HOME}/jars/* \
|
||||
--conf spark.executor.extraClassPath=${BIGDL_HOME}/jars/* \
|
||||
train.py --cluster_mode spark-submit --remote_dir hdfs://path/to/remote/data
|
||||
```
|
||||
In the `spark-submit` script:
|
||||
* `--master`: the spark master, set it to `yarn`;
|
||||
* `--deploy-mode`: set it to `client` when running programs on yarn-client mode;
|
||||
* `--executor-memory`: set the memory for each executor;
|
||||
* `--driver-memory`: set the memory for the driver node;
|
||||
* `--executor-cores`: set the cores number for each executor;
|
||||
* `--num_executors`: set the number of executors;
|
||||
* `--archives`: upload the Conda archive to YARN;
|
||||
* `--properties-file`: upload the BigDL configuration properties to YARN;
|
||||
* `--py-files`: upload extra Python dependency files to YARN;
|
||||
* `--conf spark.pyspark.driver.python`: set the Python location in Conda archive as driver's Python environment (find the location by running `which python`);
|
||||
* `--conf spark.pyspark.python`: set the Python location in Conda archive as executors' Python environment;
|
||||
* `--conf spark.driver.extraClassPath`: upload and register the BigDL jars files to the driver's classpath;
|
||||
* `--conf spark.executor.extraClassPath`: upload and register the BigDL jars files to the executors' classpath;
|
||||
|
||||
__Notes:__
|
||||
* `--cluster_mode`: set the cluster_mode in `init_orca_context`;
|
||||
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
|
||||
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
|
||||
|
||||
|
||||
#### 5.3.2 Yarn-Cluster
|
||||
|
||||
__Note:__
|
||||
* Please register BigDL jars through `--jars` option in the `spark-submit` script.
|
||||
|
||||
Submit and run the program on `yarn-cluster` mode following `spark-submit` script below:
|
||||
```bash
|
||||
${SPARK_HOME}/bin/spark-submit \
|
||||
--master yarn \
|
||||
--deploy-mode cluster \
|
||||
--executor-memory 10g \
|
||||
--driver-memory 10g \
|
||||
--executor-cores 4 \
|
||||
--num-executors 2 \
|
||||
--archives /path/to/environment.tar.gz#environment \
|
||||
--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=environment/bin/python \
|
||||
--conf spark.executorEnv.PYSPARK_PYTHON=environment/bin/python \
|
||||
--py-files ${BIGDL_HOME}/python/bigdl-spark_${SPARK_VERSION}-${BIGDL_VERSION}-python-api.zip,model.py \
|
||||
--jars ${BIGDL_HOME}/jars/bigdl-assembly-spark_${SPARK_VERSION}-${BIGDL_VERSION}-jar-with-dependencies.jar \
|
||||
train.py --cluster_mode spark-submit --remote_dir hdfs://path/to/remote/data
|
||||
```
|
||||
In the `spark-submit` script:
|
||||
* `--master`: the spark master, set it to `yarn`;
|
||||
* `--deploy-mode`: set it to `cluster` when running programs on yarn-cluster mode;
|
||||
* `--executor-memory`: set the memory for each executor;
|
||||
* `--driver-memory`: set the memory for the driver node;
|
||||
* `--executor-cores`: set the cores number for each executor;
|
||||
* `--num_executors`: set the number of executors;
|
||||
* `--archives`: upload the Conda archive to YARN;
|
||||
* `--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as Python environment of Application Master process;
|
||||
* `--conf spark.executorEnv.PYSPARK_PYTHON`: set the Python location in Conda archive as executors' Python environment, the Application Master and executor will all use the archive for Python environment;
|
||||
* `--py-files`: upload extra Python dependency files to YARN;
|
||||
* `--jars`: upload and register BigDL dependency jars files to YARN;
|
||||
|
||||
__Notes:__
|
||||
* `--cluster_mode`: set the cluster_mode in `init_orca_context`;
|
||||
* `--remote_dir`: directory on a distributed storage for the dataset (see __[Section 3](#3-prepare-dataset)__).
|
||||
* Please refer to __[Section 4](#4-prepare-custom-modules)__ for the description of extra Python dependencies.
|
||||
|
|
@ -15,42 +15,43 @@ Most AI projects start with a Python notebook running on a single laptop; howeve
|
|||
**Get Started**
|
||||
^^^
|
||||
|
||||
Documents in these sections helps you get started quickly with Orca.
|
||||
For those who are new to Orca.
|
||||
|
||||
+++
|
||||
:bdg-link:`Orca in 5 minutes <./Overview/orca.html>` |
|
||||
:bdg-link:`Installation <./Overview/install.html>`
|
||||
|
||||
.. grid-item-card::
|
||||
|
||||
**Tutorials**
|
||||
^^^
|
||||
|
||||
Quick examples to get familiar with Orca and step-by-step tutorials to run Orca on large clusters.
|
||||
|
||||
+++
|
||||
|
||||
:bdg-link:`Quickstarts <./QuickStart/index.html>` |
|
||||
:bdg-link:`Hadoop/YARN <./Tutorial/yarn.html>`
|
||||
|
||||
.. grid-item-card::
|
||||
|
||||
**Key Features Guide**
|
||||
^^^
|
||||
|
||||
Each guide in this section provides you with in-depth information, concepts and knowledges about Orca key features.
|
||||
In-depth information, concepts and knowledge about the key features in Orca.
|
||||
|
||||
+++
|
||||
|
||||
:bdg-link:`Data <./Overview/data-parallel-processing.html>` |
|
||||
:bdg-link:`Estimator <./Overview/distributed-training-inference.html>` |
|
||||
:bdg-link:`RayOnSpark <./Overview/ray.html>`
|
||||
|
||||
.. grid-item-card::
|
||||
|
||||
**Tutorials**
|
||||
^^^
|
||||
|
||||
Orca Tutorials and Examples.
|
||||
|
||||
+++
|
||||
|
||||
:bdg-link:`Tutorials <./QuickStart/index.html>`
|
||||
:bdg-link:`RayOnSpark <./Overview/ray.html>`
|
||||
|
||||
.. grid-item-card::
|
||||
|
||||
**API Document**
|
||||
^^^
|
||||
|
||||
API Document provides detailed description of Orca APIs.
|
||||
Detailed descriptions of Orca APIs.
|
||||
|
||||
+++
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue