Add Qwen2-VL gpu example (#12135)
* qwen2-vl readme * add qwen2-vl example * fix * fix * fix * add link * Update regarding modules_to_not_convert and readme * Further fix * Small fix --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
		
							parent
							
								
									310f18c8af
								
							
						
					
					
						commit
						f983f1a8f4
					
				
					 4 changed files with 253 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -283,6 +283,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
			
		|||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
			
		||||
| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) |
 | 
			
		||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
			
		||||
| Qwen2-VL    || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl)    |
 | 
			
		||||
| Qwen2-Audio    |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio)    |
 | 
			
		||||
| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
			
		||||
| Aquila2     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2)     |
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -283,6 +283,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
			
		|||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
			
		||||
| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) |
 | 
			
		||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
			
		||||
| Qwen2-VL    || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl)    |
 | 
			
		||||
| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
			
		||||
| Aquila2     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2)     |
 | 
			
		||||
| MOSS       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss)      |    | 
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										135
									
								
								python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,135 @@
 | 
			
		|||
# Qwen2-VL
 | 
			
		||||
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Qwen2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) as a reference Qwen2-VL model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2-VL model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
 | 
			
		||||
pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
 | 
			
		||||
pip install accelerate==0.33.0
 | 
			
		||||
pip install qwen_vl_utils
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
 | 
			
		||||
pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
 | 
			
		||||
pip install accelerate==0.33.0
 | 
			
		||||
pip install qwen_vl_utils
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables for Linux
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Skip this step if you are running on Windows.
 | 
			
		||||
 | 
			
		||||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2-VL model (e.g. `Qwen/Qwen2-VL-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2-VL-7B-Instruct'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
##### [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)
 | 
			
		||||
```log
 | 
			
		||||
-------------------- Input Image --------------------
 | 
			
		||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
Describe this image.
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
The image shows a young girl holdinging a white teddy bear in a pink dress in front of a stone wall.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
			
		||||
 | 
			
		||||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
 | 
			
		||||
							
								
								
									
										116
									
								
								python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl/generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										116
									
								
								python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl/generate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,116 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
 | 
			
		||||
from qwen_vl_utils import process_vision_info
 | 
			
		||||
from ipex_llm import optimize_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen2-VL model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="Describe this image.",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
			
		||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
 | 
			
		||||
                        help='The URL or path to the image to infer')
 | 
			
		||||
    
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 torch_dtype='auto',
 | 
			
		||||
                                                 low_cpu_mem_usage=True,
 | 
			
		||||
                                                 use_cache=True,)
 | 
			
		||||
 | 
			
		||||
    model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"])
 | 
			
		||||
 | 
			
		||||
    # Use .float() for better output, and use .half() for better speed
 | 
			
		||||
    model = model.half().to("xpu")
 | 
			
		||||
 | 
			
		||||
    # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart
 | 
			
		||||
 | 
			
		||||
    # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
 | 
			
		||||
    min_pixels = 256*28*28
 | 
			
		||||
    max_pixels = 1280*28*28
 | 
			
		||||
    processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
 | 
			
		||||
 | 
			
		||||
    prompt = args.prompt
 | 
			
		||||
    image_path = args.image_url_or_path
 | 
			
		||||
 | 
			
		||||
    messages = [
 | 
			
		||||
        {
 | 
			
		||||
            "role": "user",
 | 
			
		||||
            "content": [
 | 
			
		||||
                {
 | 
			
		||||
                    "type": "image",
 | 
			
		||||
                    "image": image_path,
 | 
			
		||||
                },
 | 
			
		||||
                {"type": "text", "text": prompt},
 | 
			
		||||
            ],
 | 
			
		||||
        }
 | 
			
		||||
    ]
 | 
			
		||||
    text = processor.apply_chat_template(
 | 
			
		||||
        messages, tokenize=False, add_generation_prompt=True
 | 
			
		||||
    )
 | 
			
		||||
    image_inputs, video_inputs = process_vision_info(messages)
 | 
			
		||||
    inputs = processor(
 | 
			
		||||
        text=[text],
 | 
			
		||||
        images=image_inputs,
 | 
			
		||||
        videos=video_inputs,
 | 
			
		||||
        padding=True,
 | 
			
		||||
        return_tensors="pt",
 | 
			
		||||
    )
 | 
			
		||||
    inputs = inputs.to('xpu')
 | 
			
		||||
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        # warmup
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            **inputs,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            **inputs,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        generated_ids = generated_ids.cpu()
 | 
			
		||||
        generated_ids = [
 | 
			
		||||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Input Image', '-'*20)
 | 
			
		||||
        print(image_path)
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(response)
 | 
			
		||||
		Loading…
	
		Reference in a new issue