support and optimize janus pro (#12813)
This commit is contained in:
parent
bd815a4d96
commit
f8ab833f74
3 changed files with 54 additions and 3 deletions
|
|
@ -1066,7 +1066,7 @@ def _optimize_pre(model, qtype=None):
|
|||
from ipex_llm.transformers.models.baichuan_m1 import pre_register_inv_freq
|
||||
model.apply(pre_register_inv_freq)
|
||||
elif model.config.model_type == "multi_modality":
|
||||
pass
|
||||
_optimize_pre(model.language_model)
|
||||
|
||||
return model
|
||||
|
||||
|
|
@ -2012,8 +2012,10 @@ def _optimize_post(model):
|
|||
# vision
|
||||
vpm_modeling_module_name = model.vision_model.vision_tower.__class__.__module__
|
||||
vpm_module = importlib.import_module(vpm_modeling_module_name)
|
||||
|
||||
from ipex_llm.transformers.models.janus import vision_attention_forward
|
||||
convert_forward(model.vision_model, vpm_module.Attention, vision_attention_forward)
|
||||
|
||||
# llm
|
||||
_optimize_post(model.language_model)
|
||||
|
||||
return model
|
||||
|
|
|
|||
49
python/llm/src/ipex_llm/transformers/models/janus.py
Normal file
49
python/llm/src/ipex_llm/transformers/models/janus.py
Normal file
|
|
@ -0,0 +1,49 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This file is adapted from
|
||||
# https://github.com/deepseek-ai/Janus/blob/main/janus/models/siglip_vit.py
|
||||
|
||||
import torch
|
||||
|
||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||
|
||||
|
||||
def vision_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
B, N, C = x.shape
|
||||
qkv = (
|
||||
self.qkv(x)
|
||||
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
||||
.permute(2, 0, 3, 1, 4)
|
||||
)
|
||||
q, k, v = qkv.unbind(0)
|
||||
q, k = self.q_norm(q), self.k_norm(k)
|
||||
|
||||
if self.fused_attn:
|
||||
# ipex-llm opt: sdpa
|
||||
x = scaled_dot_product_attention(
|
||||
q, k.contiguous(), v.contiguous(), None, False
|
||||
)
|
||||
else:
|
||||
q = q * self.scale
|
||||
attn = q @ k.transpose(-2, -1)
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
x = attn @ v
|
||||
|
||||
x = x.transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
|
@ -86,7 +86,7 @@ def use_quantize_kv_cache(linear: torch.nn.Module, x: torch.Tensor,
|
|||
return os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] == "1"
|
||||
elif os.environ.get("IPEX_LLM_LOW_MEM", None) is not None:
|
||||
return os.environ["IPEX_LLM_LOW_MEM"] == "1"
|
||||
elif linear.qtype in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
|
||||
elif linear.weight.dtype != torch.uint8: # unquantized
|
||||
return False
|
||||
else:
|
||||
device_name = get_xpu_device_name(x.device)
|
||||
|
|
|
|||
Loading…
Reference in a new issue