support and optimize janus pro (#12813)
This commit is contained in:
		
							parent
							
								
									bd815a4d96
								
							
						
					
					
						commit
						f8ab833f74
					
				
					 3 changed files with 54 additions and 3 deletions
				
			
		| 
						 | 
				
			
			@ -1066,7 +1066,7 @@ def _optimize_pre(model, qtype=None):
 | 
			
		|||
        from ipex_llm.transformers.models.baichuan_m1 import pre_register_inv_freq
 | 
			
		||||
        model.apply(pre_register_inv_freq)
 | 
			
		||||
    elif model.config.model_type == "multi_modality":
 | 
			
		||||
        pass
 | 
			
		||||
        _optimize_pre(model.language_model)
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -2012,8 +2012,10 @@ def _optimize_post(model):
 | 
			
		|||
        # vision
 | 
			
		||||
        vpm_modeling_module_name = model.vision_model.vision_tower.__class__.__module__
 | 
			
		||||
        vpm_module = importlib.import_module(vpm_modeling_module_name)
 | 
			
		||||
 | 
			
		||||
        from ipex_llm.transformers.models.janus import vision_attention_forward
 | 
			
		||||
        convert_forward(model.vision_model, vpm_module.Attention, vision_attention_forward)
 | 
			
		||||
 | 
			
		||||
        # llm
 | 
			
		||||
        _optimize_post(model.language_model)
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										49
									
								
								python/llm/src/ipex_llm/transformers/models/janus.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								python/llm/src/ipex_llm/transformers/models/janus.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,49 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
# This file is adapted from
 | 
			
		||||
# https://github.com/deepseek-ai/Janus/blob/main/janus/models/siglip_vit.py
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def vision_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    B, N, C = x.shape
 | 
			
		||||
    qkv = (
 | 
			
		||||
        self.qkv(x)
 | 
			
		||||
        .reshape(B, N, 3, self.num_heads, self.head_dim)
 | 
			
		||||
        .permute(2, 0, 3, 1, 4)
 | 
			
		||||
    )
 | 
			
		||||
    q, k, v = qkv.unbind(0)
 | 
			
		||||
    q, k = self.q_norm(q), self.k_norm(k)
 | 
			
		||||
 | 
			
		||||
    if self.fused_attn:
 | 
			
		||||
        # ipex-llm opt: sdpa
 | 
			
		||||
        x = scaled_dot_product_attention(
 | 
			
		||||
            q, k.contiguous(), v.contiguous(), None, False
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        q = q * self.scale
 | 
			
		||||
        attn = q @ k.transpose(-2, -1)
 | 
			
		||||
        attn = attn.softmax(dim=-1)
 | 
			
		||||
        attn = self.attn_drop(attn)
 | 
			
		||||
        x = attn @ v
 | 
			
		||||
 | 
			
		||||
    x = x.transpose(1, 2).reshape(B, N, C)
 | 
			
		||||
    x = self.proj(x)
 | 
			
		||||
    x = self.proj_drop(x)
 | 
			
		||||
    return x
 | 
			
		||||
| 
						 | 
				
			
			@ -86,7 +86,7 @@ def use_quantize_kv_cache(linear: torch.nn.Module, x: torch.Tensor,
 | 
			
		|||
        return os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] == "1"
 | 
			
		||||
    elif os.environ.get("IPEX_LLM_LOW_MEM", None) is not None:
 | 
			
		||||
        return os.environ["IPEX_LLM_LOW_MEM"] == "1"
 | 
			
		||||
    elif linear.qtype in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
 | 
			
		||||
    elif linear.weight.dtype != torch.uint8:    # unquantized
 | 
			
		||||
        return False
 | 
			
		||||
    else:
 | 
			
		||||
        device_name = get_xpu_device_name(x.device)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue