optimize npu llama2 perf again (#11445)
This commit is contained in:
parent
13f59ae6b4
commit
f89ca23748
2 changed files with 123 additions and 2 deletions
|
|
@ -31,6 +31,9 @@ def optimize_llm(model: torch.nn.Module):
|
||||||
model.apply(merge_qkv)
|
model.apply(merge_qkv)
|
||||||
from ipex_llm.transformers.npu_models.llama import merge_mlp
|
from ipex_llm.transformers.npu_models.llama import merge_mlp
|
||||||
model.apply(merge_mlp)
|
model.apply(merge_mlp)
|
||||||
|
from ipex_llm.transformers.npu_models.llama import llama_model_forward
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaModel
|
||||||
|
convert_forward(model, LlamaModel, llama_model_forward)
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
||||||
from transformers.models.llama.modeling_llama import LlamaAttention
|
from transformers.models.llama.modeling_llama import LlamaAttention
|
||||||
convert_forward(model, LlamaAttention, llama_attention_forward)
|
convert_forward(model, LlamaAttention, llama_attention_forward)
|
||||||
|
|
|
||||||
|
|
@ -32,13 +32,15 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple, List, Union
|
||||||
from transformers.cache_utils import Cache
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
from transformers.models.llama.modeling_llama import repeat_kv, apply_rotary_pos_emb
|
from transformers.models.llama.modeling_llama import repeat_kv, apply_rotary_pos_emb
|
||||||
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaMLP
|
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaMLP
|
||||||
|
|
||||||
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||||
from ipex_llm.transformers.npu_models.common import merge_linear
|
from ipex_llm.transformers.npu_models.common import merge_linear
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -63,6 +65,122 @@ def merge_mlp(module: torch.nn.Module):
|
||||||
del module.gate_proj, module.up_proj
|
del module.gate_proj, module.up_proj
|
||||||
|
|
||||||
|
|
||||||
|
def llama_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
output_attentions = (
|
||||||
|
output_attentions if output_attentions is not None
|
||||||
|
else self.config.output_attentions
|
||||||
|
)
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None
|
||||||
|
else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||||
|
invalidInputError(False,
|
||||||
|
("You cannot specify both input_ids and inputs_embeds at the same time, "
|
||||||
|
"and must specify either one"))
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
past_seen_tokens = 0
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
from ipex_llm.transformers.kv import DynamicNormalCache
|
||||||
|
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
past_seen_tokens = past_key_values.set_seq_length()
|
||||||
|
|
||||||
|
if cache_position is None:
|
||||||
|
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
|
||||||
|
device=inputs_embeds.device)
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = cache_position.unsqueeze(0)
|
||||||
|
|
||||||
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
|
||||||
|
cache_position, past_seen_tokens)
|
||||||
|
|
||||||
|
# embed positions
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for decoder_layer in self.layers:
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
layer_outputs = self._gradient_checkpointing_func(
|
||||||
|
decoder_layer.__call__,
|
||||||
|
hidden_states,
|
||||||
|
causal_mask,
|
||||||
|
position_ids,
|
||||||
|
past_key_values,
|
||||||
|
output_attentions,
|
||||||
|
use_cache,
|
||||||
|
cache_position,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask=causal_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
|
# ipex-llm changes end
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, next_cache,
|
||||||
|
all_hidden_states, all_self_attns] if v is not None)
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def llama_attention_forward(
|
def llama_attention_forward(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue