Update MiniCPM_V_26 GPU example with save & load (#12127)
This commit is contained in:
		
							parent
							
								
									669ff1a97b
								
							
						
					
					
						commit
						f71b38a994
					
				
					 2 changed files with 51 additions and 14 deletions
				
			
		| 
						 | 
				
			
			@ -114,12 +114,21 @@ set SYCL_CACHE_PERSISTENT=1
 | 
			
		|||
  ```
 | 
			
		||||
  python ./chat.py --prompt 'What is in the image?' --stream
 | 
			
		||||
  ```
 | 
			
		||||
- save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist)
 | 
			
		||||
  ```
 | 
			
		||||
  python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
 | 
			
		||||
  ```
 | 
			
		||||
- chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists):
 | 
			
		||||
  ```
 | 
			
		||||
  python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
 | 
			
		||||
  ```
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
 | 
			
		||||
- `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string.
 | 
			
		||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
			
		||||
- `--stream`: flag to chat in streaming mode
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -22,7 +22,7 @@ import requests
 | 
			
		|||
import torch
 | 
			
		||||
from PIL import Image
 | 
			
		||||
from ipex_llm.transformers import AutoModel
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers import AutoTokenizer, AutoProcessor
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
| 
						 | 
				
			
			@ -30,6 +30,13 @@ if __name__ == '__main__':
 | 
			
		|||
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
			
		||||
                        help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument("--lowbit-path", type=str,
 | 
			
		||||
        default="",
 | 
			
		||||
        help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
 | 
			
		||||
             "Leave it blank if you want to load from the original model. "
 | 
			
		||||
             "If the path does not exist, model with low-bit optimization will be saved there."
 | 
			
		||||
             "Otherwise, model with low-bit optimization will be loaded from the path.",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
			
		||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
			
		||||
                        help='The URL or path to the image to infer')
 | 
			
		||||
| 
						 | 
				
			
			@ -41,22 +48,43 @@ if __name__ == '__main__':
 | 
			
		|||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    image_path = args.image_url_or_path
 | 
			
		||||
 | 
			
		||||
    lowbit_path = args.lowbit_path
 | 
			
		||||
    
 | 
			
		||||
    if not lowbit_path or not os.path.exists(lowbit_path):
 | 
			
		||||
        # Load model in 4 bit,
 | 
			
		||||
        # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
        # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
			
		||||
        # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, 
 | 
			
		||||
                                        load_in_low_bit="sym_int4",
 | 
			
		||||
                                        optimize_model=True,
 | 
			
		||||
                                        trust_remote_code=True,
 | 
			
		||||
                                        use_cache=True,
 | 
			
		||||
                                        modules_to_not_convert=["vpm", "resampler"])
 | 
			
		||||
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                                  trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModel.load_low_bit(lowbit_path, 
 | 
			
		||||
                                       optimize_model=True,
 | 
			
		||||
                                       trust_remote_code=True,
 | 
			
		||||
                                       use_cache=True,
 | 
			
		||||
                                       modules_to_not_convert=["vpm", "resampler"])
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(lowbit_path,
 | 
			
		||||
                                                  trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
			
		||||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
			
		||||
    model = AutoModel.from_pretrained(model_path, 
 | 
			
		||||
                                      load_in_low_bit="sym_int4",
 | 
			
		||||
                                      optimize_model=True,
 | 
			
		||||
                                      trust_remote_code=True,
 | 
			
		||||
                                      use_cache=True,
 | 
			
		||||
                                      modules_to_not_convert=["vpm", "resampler"])
 | 
			
		||||
    model = model.half().to('xpu')
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    model.eval()
 | 
			
		||||
 | 
			
		||||
    if lowbit_path and not os.path.exists(lowbit_path):
 | 
			
		||||
        processor = AutoProcessor.from_pretrained(model_path,
 | 
			
		||||
                                                trust_remote_code=True)
 | 
			
		||||
        model.save_low_bit(lowbit_path)
 | 
			
		||||
        tokenizer.save_pretrained(lowbit_path)
 | 
			
		||||
        processor.save_pretrained(lowbit_path)
 | 
			
		||||
 | 
			
		||||
    model = model.half().to('xpu')
 | 
			
		||||
 | 
			
		||||
    query = args.prompt
 | 
			
		||||
    if os.path.exists(image_path):
 | 
			
		||||
       image = Image.open(image_path).convert('RGB')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue