Add serving docker quickstart (#11072)
* add temp file * add initial docker readme * temp * done * add fastchat service * fix * fix * fix * fix * remove stale file
This commit is contained in:
parent
f00625f9a4
commit
f654f7e08c
6 changed files with 287 additions and 1 deletions
|
|
@ -86,6 +86,12 @@
|
||||||
<li>
|
<li>
|
||||||
<a href="doc/LLM/DockerGuides/docker_cpp_xpu_quickstart.html">Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker</a>
|
<a href="doc/LLM/DockerGuides/docker_cpp_xpu_quickstart.html">Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker</a>
|
||||||
</li>
|
</li>
|
||||||
|
<li>
|
||||||
|
<a href="doc/LLM/DockerGuides/fastchat_docker_quickstart.html">Run IPEX-LLM integrated FastChat on an Intel GPU via Docker</a>
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<a href="doc/LLM/DockerGuides/vllm_docker_quickstart.html">Run IPEX-LLM integrated vLLM on an Intel GPU via Docker</a>
|
||||||
|
</li>
|
||||||
</ul>
|
</ul>
|
||||||
</li>
|
</li>
|
||||||
<li>
|
<li>
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,117 @@
|
||||||
|
# Serving using IPEX-LLM integrated FastChat on Intel GPUs via docker
|
||||||
|
|
||||||
|
This guide demonstrates how to do LLM serving with `IPEX-LLM` integrated `FastChat` in Docker on Linux with Intel GPUs.
|
||||||
|
|
||||||
|
## Install docker
|
||||||
|
|
||||||
|
Follow the instructions in this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/docker_windows_gpu.html#linux) to install Docker on Linux.
|
||||||
|
|
||||||
|
## Pull the latest image
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# This image will be updated every day
|
||||||
|
docker pull intelanalytics/ipex-llm-serving-xpu:latest
|
||||||
|
```
|
||||||
|
|
||||||
|
## Start Docker Container
|
||||||
|
|
||||||
|
To map the `xpu` into the container, you need to specify `--device=/dev/dri` when booting the container. Change the `/path/to/models` to mount the models.
|
||||||
|
|
||||||
|
```
|
||||||
|
#/bin/bash
|
||||||
|
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-xpu:latest
|
||||||
|
export CONTAINER_NAME=ipex-llm-serving-xpu-container
|
||||||
|
sudo docker run -itd \
|
||||||
|
--net=host \
|
||||||
|
--device=/dev/dri \
|
||||||
|
-v /path/to/models:/llm/models \
|
||||||
|
-e no_proxy=localhost,127.0.0.1 \
|
||||||
|
--memory="32G" \
|
||||||
|
--name=$CONTAINER_NAME \
|
||||||
|
--shm-size="16g" \
|
||||||
|
$DOCKER_IMAGE
|
||||||
|
```
|
||||||
|
|
||||||
|
After the container is booted, you could get into the container through `docker exec`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker exec -it ipex-llm-serving-xpu-container /bin/bash
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
root@arda-arc12:/# sycl-ls
|
||||||
|
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
|
||||||
|
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
|
||||||
|
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
|
||||||
|
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Running FastChat serving with IPEX-LLM on Intel GPU in Docker
|
||||||
|
|
||||||
|
For convenience, we have provided a script named `/llm/start-fastchat-service.sh` for you to start the service.
|
||||||
|
|
||||||
|
However, the script only provide instructions for the most common scenarios. If this script doesn't meet your needs, you can always find the complete guidance for FastChat at [Serving using IPEX-LLM and FastChat](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/fastchat_quickstart.html#start-the-service).
|
||||||
|
|
||||||
|
Before starting the service, you can refer to this [section](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#runtime-configurations) to setup our recommended runtime configurations.
|
||||||
|
|
||||||
|
Now we can start the FastChat service, you can use our provided script `/llm/start-fastchat-service.sh` like the following way:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Only the MODEL_PATH needs to be set, other parameters have default values
|
||||||
|
export MODEL_PATH=YOUR_SELECTED_MODEL_PATH
|
||||||
|
export LOW_BIT_FORMAT=sym_int4
|
||||||
|
export CONTROLLER_HOST=localhost
|
||||||
|
export CONTROLLER_PORT=21001
|
||||||
|
export WORKER_HOST=localhost
|
||||||
|
export WORKER_PORT=21002
|
||||||
|
export API_HOST=localhost
|
||||||
|
export API_PORT=8000
|
||||||
|
|
||||||
|
# Use the default model_worker
|
||||||
|
bash /llm/start-fastchat-service.sh -w model_worker
|
||||||
|
```
|
||||||
|
|
||||||
|
If everything goes smoothly, the result should be similar to the following figure:
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/start-fastchat.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/start-fastchat.png" width=100%; />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
By default, we are using the `ipex_llm_worker` as the backend engine. You can also use `vLLM` as the backend engine. Try the following examples:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Only the MODEL_PATH needs to be set, other parameters have default values
|
||||||
|
export MODEL_PATH=YOUR_SELECTED_MODEL_PATH
|
||||||
|
export LOW_BIT_FORMAT=sym_int4
|
||||||
|
export CONTROLLER_HOST=localhost
|
||||||
|
export CONTROLLER_PORT=21001
|
||||||
|
export WORKER_HOST=localhost
|
||||||
|
export WORKER_PORT=21002
|
||||||
|
export API_HOST=localhost
|
||||||
|
export API_PORT=8000
|
||||||
|
|
||||||
|
# Use the default model_worker
|
||||||
|
bash /llm/start-fastchat-service.sh -w vllm_worker
|
||||||
|
```
|
||||||
|
|
||||||
|
The `vllm_worker` may start slowly than normal `ipex_llm_worker`. The booted service should be similar to the following figure:
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-vllm-worker.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-vllm-worker.png" width=100%; />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
|
||||||
|
```eval_rst
|
||||||
|
.. note::
|
||||||
|
To verify/use the service booted by the script, follow the instructions in `this guide <https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/fastchat_quickstart.html#launch-restful-api-serve>`_.
|
||||||
|
```
|
||||||
|
|
||||||
|
After a request has been sent to the `openai_api_server`, the corresponding inference time latency can be found in the worker log as shown below:
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-benchmark.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/fastchat-benchmark.png" width=100%; />
|
||||||
|
</a>
|
||||||
|
|
@ -7,3 +7,5 @@ In this section, you will find guides related to using IPEX-LLM with Docker, cov
|
||||||
* `Overview of IPEX-LLM Containers for Intel GPU <./docker_windows_gpu.html>`_
|
* `Overview of IPEX-LLM Containers for Intel GPU <./docker_windows_gpu.html>`_
|
||||||
* `Run PyTorch Inference on an Intel GPU via Docker <./docker_pytorch_inference_gpu.html>`_
|
* `Run PyTorch Inference on an Intel GPU via Docker <./docker_pytorch_inference_gpu.html>`_
|
||||||
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`_
|
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`_
|
||||||
|
* `Run IPEX-LLM integrated FastChat with Docker on Intel GPU <./fastchat_docker_quickstart>`_
|
||||||
|
* `Run IPEX-LLM integrated vLLM with Docker on Intel GPU <./vllm_docker_quickstart>`_
|
||||||
|
|
@ -0,0 +1,145 @@
|
||||||
|
# Serving using IPEX-LLM integrated vLLM on Intel GPUs via docker
|
||||||
|
|
||||||
|
This guide demonstrates how to do LLM serving with `IPEX-LLM` integrated `vLLM` in Docker on Linux with Intel GPUs.
|
||||||
|
|
||||||
|
## Install docker
|
||||||
|
|
||||||
|
Follow the instructions in this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/docker_windows_gpu.html#linux) to install Docker on Linux.
|
||||||
|
|
||||||
|
## Pull the latest image
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# This image will be updated every day
|
||||||
|
docker pull intelanalytics/ipex-llm-serving-xpu:latest
|
||||||
|
```
|
||||||
|
|
||||||
|
## Start Docker Container
|
||||||
|
|
||||||
|
To map the `xpu` into the container, you need to specify `--device=/dev/dri` when booting the container. Change the `/path/to/models` to mount the models.
|
||||||
|
|
||||||
|
```
|
||||||
|
#/bin/bash
|
||||||
|
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-xpu:latest
|
||||||
|
export CONTAINER_NAME=ipex-llm-serving-xpu-container
|
||||||
|
sudo docker run -itd \
|
||||||
|
--net=host \
|
||||||
|
--device=/dev/dri \
|
||||||
|
-v /path/to/models:/llm/models \
|
||||||
|
-e no_proxy=localhost,127.0.0.1 \
|
||||||
|
--memory="32G" \
|
||||||
|
--name=$CONTAINER_NAME \
|
||||||
|
--shm-size="16g" \
|
||||||
|
$DOCKER_IMAGE
|
||||||
|
```
|
||||||
|
|
||||||
|
After the container is booted, you could get into the container through `docker exec`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker exec -it ipex-llm-serving-xpu-container /bin/bash
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
root@arda-arc12:/# sycl-ls
|
||||||
|
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
|
||||||
|
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
|
||||||
|
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
|
||||||
|
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running vLLM serving with IPEX-LLM on Intel GPU in Docker
|
||||||
|
|
||||||
|
We have included multiple vLLM-related files in `/llm/`:
|
||||||
|
1. `vllm_offline_inference.py`: Used for vLLM offline inference example
|
||||||
|
2. `benchmark_vllm_throughput.py`: Used for benchmarking throughput
|
||||||
|
3. `payload-1024.lua`: Used for testing request per second using 1k-128 request
|
||||||
|
4. `start-vllm-service.sh`: Used for template for starting vLLM service
|
||||||
|
|
||||||
|
Before performing benchmark or starting the service, you can refer to this [section](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html#runtime-configurations) to setup our recommended runtime configurations.
|
||||||
|
|
||||||
|
|
||||||
|
### Service
|
||||||
|
|
||||||
|
#### Single card serving
|
||||||
|
|
||||||
|
A script named `/llm/start-vllm-service.sh` have been included in the image for starting the service conveniently.
|
||||||
|
|
||||||
|
Modify the `model` and `served_model_name` in the script so that it fits your requirement. The `served_model_name` indicates the model name used in the API.
|
||||||
|
|
||||||
|
Then start the service using `bash /llm/start-vllm-service.sh`, the following message should be print if the service started successfully.
|
||||||
|
|
||||||
|
If the service have booted successfully, you should see the output similar to the following figure:
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/start-vllm-service.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/start-vllm-service.png" width=100%; />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
|
||||||
|
#### Multi-card serving
|
||||||
|
|
||||||
|
vLLM supports to utilize multiple cards through tensor parallel.
|
||||||
|
|
||||||
|
You can refer to this [documentation](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#about-tensor-paralle) on how to utilize the `tensor-parallel` feature and start the service.
|
||||||
|
|
||||||
|
#### Verify
|
||||||
|
After the service has been booted successfully, you can send a test request using `curl`. Here, `YOUR_MODEL` should be set equal to `served_model_name` in your booting script, e.g. `Qwen1.5`.
|
||||||
|
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl http://localhost:8000/v1/completions \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"model": "YOUR_MODEL",
|
||||||
|
"prompt": "San Francisco is a",
|
||||||
|
"max_tokens": 128,
|
||||||
|
"temperature": 0
|
||||||
|
}' | jq '.choices[0].text'
|
||||||
|
```
|
||||||
|
|
||||||
|
Below shows an example output using `Qwen1.5-7B-Chat` with low-bit format `sym_int4`:
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/vllm-curl-result.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/vllm-curl-result.png" width=100%; />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
#### Tuning
|
||||||
|
|
||||||
|
You can tune the service using these four arguments:
|
||||||
|
- `--gpu-memory-utilization`
|
||||||
|
- `--max-model-len`
|
||||||
|
- `--max-num-batched-token`
|
||||||
|
- `--max-num-seq`
|
||||||
|
|
||||||
|
You can refer to this [doc](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#service) for a detailed explaination on these parameters.
|
||||||
|
|
||||||
|
### Benchmark
|
||||||
|
|
||||||
|
#### Online benchmark throurgh api_server
|
||||||
|
|
||||||
|
We can benchmark the api_server to get an estimation about TPS (transactions per second). To do so, you need to start the service first according to the instructions mentioned above.
|
||||||
|
|
||||||
|
Then in the container, do the following:
|
||||||
|
1. modify the `/llm/payload-1024.lua` so that the "model" attribute is correct. By default, we use a prompt that is roughly 1024 token long, you can change it if needed.
|
||||||
|
2. Start the benchmark using `wrk` using the script below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd /llm
|
||||||
|
# warmup due to JIT compliation
|
||||||
|
wrk -t4 -c4 -d3m -s payload-1024.lua http://localhost:8000/v1/completions --timeout 1h
|
||||||
|
# You can change -t and -c to control the concurrency.
|
||||||
|
# By default, we use 12 connections to benchmark the service.
|
||||||
|
wrk -t12 -c12 -d15m -s payload-1024.lua http://localhost:8000/v1/completions --timeout 1h
|
||||||
|
```
|
||||||
|
|
||||||
|
The following figure shows performing benchmark on `Llama-2-7b-chat-hf` using the above script:
|
||||||
|
|
||||||
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/service-benchmark-result.png" target="_blank">
|
||||||
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/service-benchmark-result.png" width=100%; />
|
||||||
|
</a>
|
||||||
|
|
||||||
|
|
||||||
|
#### Offline benchmark through benchmark_vllm_throughput.py
|
||||||
|
|
||||||
|
Please refer to this [section](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#performing-benchmark) on how to use `benchmark_vllm_throughput.py` for benchmarking.
|
||||||
|
|
@ -61,6 +61,15 @@ export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
python3 -m ipex_llm.serving.fastchat.ipex_llm_worker --model-path REPO_ID_OR_YOUR_MODEL_PATH --low-bit "sym_int4" --trust-remote-code --device "xpu"
|
python3 -m ipex_llm.serving.fastchat.ipex_llm_worker --model-path REPO_ID_OR_YOUR_MODEL_PATH --low-bit "sym_int4" --trust-remote-code --device "xpu"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
We have also provided an option `--load-low-bit-model` to load models that have been converted and saved into disk using the `save_low_bit` interface as introduced in this [document](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/KeyFeatures/hugging_face_format.html#save-load).
|
||||||
|
|
||||||
|
Check the following examples:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Or --device "cpu"
|
||||||
|
python -m ipex_llm.serving.fastchat.ipex_llm_worker --model-path /Low/Bit/Model/Path --trust-remote-code --device "xpu" --load-low-bit-model
|
||||||
|
```
|
||||||
|
|
||||||
#### For self-speculative decoding example:
|
#### For self-speculative decoding example:
|
||||||
|
|
||||||
You can use IPEX-LLM to run `self-speculative decoding` example. Refer to [here](https://github.com/intel-analytics/ipex-llm/tree/c9fac8c26bf1e1e8f7376fa9a62b32951dd9e85d/python/llm/example/GPU/Speculative-Decoding) for more details on intel MAX GPUs. Refer to [here](https://github.com/intel-analytics/ipex-llm/tree/c9fac8c26bf1e1e8f7376fa9a62b32951dd9e85d/python/llm/example/GPU/Speculative-Decoding) for more details on intel CPUs.
|
You can use IPEX-LLM to run `self-speculative decoding` example. Refer to [here](https://github.com/intel-analytics/ipex-llm/tree/c9fac8c26bf1e1e8f7376fa9a62b32951dd9e85d/python/llm/example/GPU/Speculative-Decoding) for more details on intel MAX GPUs. Refer to [here](https://github.com/intel-analytics/ipex-llm/tree/c9fac8c26bf1e1e8f7376fa9a62b32951dd9e85d/python/llm/example/GPU/Speculative-Decoding) for more details on intel CPUs.
|
||||||
|
|
|
||||||
|
|
@ -4,6 +4,13 @@ vLLM is a fast and easy-to-use library for LLM inference and serving. You can fi
|
||||||
|
|
||||||
IPEX-LLM can be integrated into vLLM so that user can use `IPEX-LLM` to boost the performance of vLLM engine on Intel **GPUs** *(e.g., local PC with descrete GPU such as Arc, Flex and Max)*.
|
IPEX-LLM can be integrated into vLLM so that user can use `IPEX-LLM` to boost the performance of vLLM engine on Intel **GPUs** *(e.g., local PC with descrete GPU such as Arc, Flex and Max)*.
|
||||||
|
|
||||||
|
Currently, IPEX-LLM integrated vLLM only supports the following models:
|
||||||
|
|
||||||
|
- Qwen series models
|
||||||
|
- Llama series models
|
||||||
|
- ChatGLM series models
|
||||||
|
- Baichuan series models
|
||||||
|
|
||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue